Phase Segmentation Methods for an Automatic Surgical Workflow Analysis.

IF 3.3 Q2 ENGINEERING, BIOMEDICAL
International Journal of Biomedical Imaging Pub Date : 2017-01-01 Epub Date: 2017-03-19 DOI:10.1155/2017/1985796
Dinh Tuan Tran, Ryuhei Sakurai, Hirotake Yamazoe, Joo-Ho Lee
{"title":"Phase Segmentation Methods for an Automatic Surgical Workflow Analysis.","authors":"Dinh Tuan Tran, Ryuhei Sakurai, Hirotake Yamazoe, Joo-Ho Lee","doi":"10.1155/2017/1985796","DOIUrl":null,"url":null,"abstract":"In this paper, we present robust methods for automatically segmenting phases in a specified surgical workflow by using latent Dirichlet allocation (LDA) and hidden Markov model (HMM) approaches. More specifically, our goal is to output an appropriate phase label for each given time point of a surgical workflow in an operating room. The fundamental idea behind our work lies in constructing an HMM based on observed values obtained via an LDA topic model covering optical flow motion features of general working contexts, including medical staff, equipment, and materials. We have an awareness of such working contexts by using multiple synchronized cameras to capture the surgical workflow. Further, we validate the robustness of our methods by conducting experiments involving up to 12 phases of surgical workflows with the average length of each surgical workflow being 12.8 minutes. The maximum average accuracy achieved after applying leave-one-out cross-validation was 84.4%, which we found to be a very promising result.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"1985796"},"PeriodicalIF":3.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/1985796","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/1985796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we present robust methods for automatically segmenting phases in a specified surgical workflow by using latent Dirichlet allocation (LDA) and hidden Markov model (HMM) approaches. More specifically, our goal is to output an appropriate phase label for each given time point of a surgical workflow in an operating room. The fundamental idea behind our work lies in constructing an HMM based on observed values obtained via an LDA topic model covering optical flow motion features of general working contexts, including medical staff, equipment, and materials. We have an awareness of such working contexts by using multiple synchronized cameras to capture the surgical workflow. Further, we validate the robustness of our methods by conducting experiments involving up to 12 phases of surgical workflows with the average length of each surgical workflow being 12.8 minutes. The maximum average accuracy achieved after applying leave-one-out cross-validation was 84.4%, which we found to be a very promising result.

Abstract Image

Abstract Image

Abstract Image

手术流程自动分析的相位分割方法。
在本文中,我们提出了一种鲁棒的方法来自动分割阶段在一个特定的外科工作流程中使用潜在的狄利克雷分配(LDA)和隐马尔可夫模型(HMM)的方法。更具体地说,我们的目标是为手术室中手术工作流程的每个给定时间点输出适当的阶段标签。我们工作背后的基本思想是基于LDA主题模型获得的观测值构建HMM,该模型涵盖了一般工作环境(包括医务人员、设备和材料)的光流运动特征。我们通过使用多个同步摄像机来捕捉手术工作流程来了解这种工作环境。此外,我们通过进行涉及多达12个阶段的手术工作流程的实验来验证我们方法的稳健性,每个手术工作流程的平均长度为12.8分钟。采用留一交叉验证后的最大平均准确率为84.4%,这是一个非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信