Dimitrios P Sokolis, Constantinos A Dimitriou, Pavlos Lelovas, Nikolaos G Kostomitsopoulos, Ismene A Dontas
{"title":"Effect of ovariectomy and Sideritis euboea extract administration on large artery mechanics, morphology, and structure in middle-aged rats.","authors":"Dimitrios P Sokolis, Constantinos A Dimitriou, Pavlos Lelovas, Nikolaos G Kostomitsopoulos, Ismene A Dontas","doi":"10.3233/BIR-16113","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Arterial function is regulated by estrogen, but no consistent pattern of arterial mechanical remodeling in response to depleted estrogen levels is available.</p><p><strong>Objective: </strong>To examine long-term effects of ovariectomy (OVX) on the mechanical properties, morphology, and histological structure of the carotid artery in middle-aged rats and a potentially protective effect of Sideritis euboea extract (SID), commonly consumed as \"mountain tea\".</p><p><strong>Methods: </strong>10-month-old female Wistar rats were allocated into control (sham-operated), OVX, OVX+SID, and OVX+MALT (maltodextrin; excipient used for dilution of SID) groups. They were sacrificed after 6 months and their carotid arteries were submitted to inflation/extension tests and to dimensional and histological evaluation.</p><p><strong>Results: </strong>Remodeling in OVX rats was characterized by a decreased in situ axial extension ratio, along with increased opening angle, thickness, and area of the vessel wall and of its medial layer, but unchanged lumen diameter. Compositional changes involved increased elastin/collagen densities. Characterization by the \"four-fiber\" microstructure-motivated model revealed similar in situ biaxial response of carotid arteries in OVX and control rats.</p><p><strong>Conclusions: </strong>Carotid artery remodeling in OVX rats was largely consistent with hypertensive remodeling, despite the minor arterial pressure changes found, and was not altered by administration of SID, despite previous evidence of its osteo-protective effect.</p>","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"54 1","pages":"1-23"},"PeriodicalIF":1.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-16113","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-16113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Arterial function is regulated by estrogen, but no consistent pattern of arterial mechanical remodeling in response to depleted estrogen levels is available.
Objective: To examine long-term effects of ovariectomy (OVX) on the mechanical properties, morphology, and histological structure of the carotid artery in middle-aged rats and a potentially protective effect of Sideritis euboea extract (SID), commonly consumed as "mountain tea".
Methods: 10-month-old female Wistar rats were allocated into control (sham-operated), OVX, OVX+SID, and OVX+MALT (maltodextrin; excipient used for dilution of SID) groups. They were sacrificed after 6 months and their carotid arteries were submitted to inflation/extension tests and to dimensional and histological evaluation.
Results: Remodeling in OVX rats was characterized by a decreased in situ axial extension ratio, along with increased opening angle, thickness, and area of the vessel wall and of its medial layer, but unchanged lumen diameter. Compositional changes involved increased elastin/collagen densities. Characterization by the "four-fiber" microstructure-motivated model revealed similar in situ biaxial response of carotid arteries in OVX and control rats.
Conclusions: Carotid artery remodeling in OVX rats was largely consistent with hypertensive remodeling, despite the minor arterial pressure changes found, and was not altered by administration of SID, despite previous evidence of its osteo-protective effect.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.