{"title":"Detection of Transferrin Receptor CD71 on a Shear Horizontal Surface Acoustic Wave Biosensor","authors":"Xue-Chang Lo;Ming-Tsang Lee;Da-Jeng Yao","doi":"10.1109/OJNANO.2020.3044352","DOIUrl":null,"url":null,"abstract":"A semi-empirical model was applied to estimate the frequency shift of a shear-horizontal surface-acoustic-wave (SH-SAW) biosensor for detecting a disease-related biomarker antigen transferrin receptor (CD71) in the sample. In the simulation to investigate its sensitivity, a shift of the SH-SAW resonant frequency occurred by applying an incremental surface mass density change on the surface. The semi-empirical model was proposed and developed by using the experimental and numerical results to relate the concentration of the biomarker to the frequency shift. Results indicated that the thickness of the SiO2 guiding layer affects the sensitivity of SH-SAW sensing, and the dependence is non-monotonically. The SH-SAW sensor was used for specific detection of biotin at a varied concentration. With the concentration of the targeted antigen in the range 0.4 ∼4.2 μg/mL, a typical exponential relation was found between the quantitative target and the frequency shift. Measurement results showed that the mass-loading effect of the antibody-antigen has a reliable response with a sensitivity of 0.94 kHz/(μg/mL). Effects of the sample flow rate on the antigen- antibody interaction and thus the frequency shift of the SH-SAW sensor were also evaluated. It is demonstrated that the proposed model provides a useful approach to analyze effectively the frequency shift dependence on the concentration and the flow rates of sensed molecules in a flow-type SH-SAW sensor.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/OJNANO.2020.3044352","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9292942/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A semi-empirical model was applied to estimate the frequency shift of a shear-horizontal surface-acoustic-wave (SH-SAW) biosensor for detecting a disease-related biomarker antigen transferrin receptor (CD71) in the sample. In the simulation to investigate its sensitivity, a shift of the SH-SAW resonant frequency occurred by applying an incremental surface mass density change on the surface. The semi-empirical model was proposed and developed by using the experimental and numerical results to relate the concentration of the biomarker to the frequency shift. Results indicated that the thickness of the SiO2 guiding layer affects the sensitivity of SH-SAW sensing, and the dependence is non-monotonically. The SH-SAW sensor was used for specific detection of biotin at a varied concentration. With the concentration of the targeted antigen in the range 0.4 ∼4.2 μg/mL, a typical exponential relation was found between the quantitative target and the frequency shift. Measurement results showed that the mass-loading effect of the antibody-antigen has a reliable response with a sensitivity of 0.94 kHz/(μg/mL). Effects of the sample flow rate on the antigen- antibody interaction and thus the frequency shift of the SH-SAW sensor were also evaluated. It is demonstrated that the proposed model provides a useful approach to analyze effectively the frequency shift dependence on the concentration and the flow rates of sensed molecules in a flow-type SH-SAW sensor.