Jane E Huggins, Ramses E Alcaide-Aguirre, Katya Hill
{"title":"Effects of text generation on P300 brain-computer interface performance.","authors":"Jane E Huggins, Ramses E Alcaide-Aguirre, Katya Hill","doi":"10.1080/2326263X.2016.1203629","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interfaces (BCIs) are intended to provide independent communication for those with the most severe physical impairments. However, development and testing of BCIs is typically conducted with copy-spelling of provided text, which models only a small portion of a functional communication task. This study was designed to determine how BCI performance is affected by novel text generation. We used a within-subject single-session study design in which subjects used a BCI to perform copy-spelling of provided text and to generate self-composed text to describe a picture. Additional off-line analysis was performed to identify changes in the event-related potentials that the BCI detects and to examine the effects of training the BCI classifier on task-specific data. Accuracy was reduced during the picture description task; (<i>t</i>(8)=2.59 <i>p</i>=0.0321). Creating the classifier using self-generated text data significantly improved accuracy on these data; (<i>t</i>(7)=-2.68, <i>p</i>=0.0317), but did not bring performance up to the level achieved during copy-spelling. Thus, this study shows that the task for which the BCI is used makes a difference in BCI accuracy. Task-specific BCI classifiers are a first step to counteract this effect, but additional study is needed.</p>","PeriodicalId":45112,"journal":{"name":"Brain-Computer Interfaces","volume":"3 2","pages":"112-120"},"PeriodicalIF":1.8000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2326263X.2016.1203629","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-Computer Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2326263X.2016.1203629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/7/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 8
Abstract
Brain-computer interfaces (BCIs) are intended to provide independent communication for those with the most severe physical impairments. However, development and testing of BCIs is typically conducted with copy-spelling of provided text, which models only a small portion of a functional communication task. This study was designed to determine how BCI performance is affected by novel text generation. We used a within-subject single-session study design in which subjects used a BCI to perform copy-spelling of provided text and to generate self-composed text to describe a picture. Additional off-line analysis was performed to identify changes in the event-related potentials that the BCI detects and to examine the effects of training the BCI classifier on task-specific data. Accuracy was reduced during the picture description task; (t(8)=2.59 p=0.0321). Creating the classifier using self-generated text data significantly improved accuracy on these data; (t(7)=-2.68, p=0.0317), but did not bring performance up to the level achieved during copy-spelling. Thus, this study shows that the task for which the BCI is used makes a difference in BCI accuracy. Task-specific BCI classifiers are a first step to counteract this effect, but additional study is needed.