Fluorescence-Guided Resection of Malignant Glioma with 5-ALA.

IF 3.3 Q2 ENGINEERING, BIOMEDICAL
International Journal of Biomedical Imaging Pub Date : 2016-01-01 Epub Date: 2016-06-27 DOI:10.1155/2016/6135293
Sadahiro Kaneko, Sadao Kaneko
{"title":"Fluorescence-Guided Resection of Malignant Glioma with 5-ALA.","authors":"Sadahiro Kaneko,&nbsp;Sadao Kaneko","doi":"10.1155/2016/6135293","DOIUrl":null,"url":null,"abstract":"<p><p>Malignant gliomas are extremely difficult to treat with no specific curative treatment. On the other hand, photodynamic medicine represents a promising technique for neurosurgeons in the treatment of malignant glioma. The resection rate of malignant glioma has increased from 40% to 80% owing to 5-aminolevulinic acid-photodynamic diagnosis (ALA-PDD). Furthermore, ALA is very useful because it has no serious complications. Based on previous research, it is apparent that protoporphyrin IX (PpIX) accumulates abundantly in malignant glioma tissues after ALA administration. Moreover, it is evident that the mechanism underlying PpIX accumulation in malignant glioma tissues involves an abnormality in porphyrin-heme metabolism, specifically decreased ferrochelatase enzyme activity. During resection surgery, the macroscopic fluorescence of PpIX to the naked eye is more sensitive than magnetic resonance imaging, and the alert real time spectrum of PpIX is the most sensitive method. In the future, chemotherapy with new anticancer agents, immunotherapy, and new methods of radiotherapy and gene therapy will be developed; however, ALA will play a key role in malignant glioma treatment before the development of these new treatments. In this paper, we provide an overview and present the results of our clinical research on ALA-PDD. </p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2016 ","pages":"6135293"},"PeriodicalIF":3.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6135293","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6135293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 50

Abstract

Malignant gliomas are extremely difficult to treat with no specific curative treatment. On the other hand, photodynamic medicine represents a promising technique for neurosurgeons in the treatment of malignant glioma. The resection rate of malignant glioma has increased from 40% to 80% owing to 5-aminolevulinic acid-photodynamic diagnosis (ALA-PDD). Furthermore, ALA is very useful because it has no serious complications. Based on previous research, it is apparent that protoporphyrin IX (PpIX) accumulates abundantly in malignant glioma tissues after ALA administration. Moreover, it is evident that the mechanism underlying PpIX accumulation in malignant glioma tissues involves an abnormality in porphyrin-heme metabolism, specifically decreased ferrochelatase enzyme activity. During resection surgery, the macroscopic fluorescence of PpIX to the naked eye is more sensitive than magnetic resonance imaging, and the alert real time spectrum of PpIX is the most sensitive method. In the future, chemotherapy with new anticancer agents, immunotherapy, and new methods of radiotherapy and gene therapy will be developed; however, ALA will play a key role in malignant glioma treatment before the development of these new treatments. In this paper, we provide an overview and present the results of our clinical research on ALA-PDD.

荧光引导下5-ALA切除恶性胶质瘤。
恶性胶质瘤非常难以治疗,没有特异性的治疗方法。另一方面,光动力医学为神经外科医生治疗恶性胶质瘤提供了一种很有前途的技术。5-氨基乙酰丙酸光动力诊断(ALA-PDD)使恶性胶质瘤的切除率从40%提高到80%。此外,ALA非常有用,因为它没有严重的并发症。根据以往的研究,我们发现ALA给药后,原卟啉IX (PpIX)在恶性胶质瘤组织中大量积累。此外,PpIX在恶性胶质瘤组织中积累的机制显然与卟啉-血红素代谢异常有关,特别是铁螯合酶活性降低。在切除手术中,PpIX肉眼宏观荧光比磁共振成像更敏感,而PpIX的预警实时光谱是最敏感的方法。未来将发展新的抗癌药物化疗、免疫治疗、放射治疗和基因治疗的新方法;然而,在这些新疗法开发之前,ALA将在恶性胶质瘤治疗中发挥关键作用。本文就ALA-PDD的临床研究进展作一综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信