An Example of an Improvable Rao-Blackwell Improvement, Inefficient Maximum Likelihood Estimator, and Unbiased Generalized Bayes Estimator.

IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY
American Statistician Pub Date : 2016-01-02 Epub Date: 2016-03-31 DOI:10.1080/00031305.2015.1100683
Tal Galili, Isaac Meilijson
{"title":"An Example of an Improvable Rao-Blackwell Improvement, Inefficient Maximum Likelihood Estimator, and Unbiased Generalized Bayes Estimator.","authors":"Tal Galili,&nbsp;Isaac Meilijson","doi":"10.1080/00031305.2015.1100683","DOIUrl":null,"url":null,"abstract":"<p><p>The Rao-Blackwell theorem offers a procedure for converting a crude unbiased estimator of a parameter θ into a \"better\" one, in fact unique and optimal if the improvement is based on a minimal sufficient statistic that is complete. In contrast, behind every minimal sufficient statistic that is not complete, there is an improvable Rao-Blackwell improvement. This is illustrated via a simple example based on the uniform distribution, in which a rather natural Rao-Blackwell improvement is uniformly improvable. Furthermore, in this example the maximum likelihood estimator is inefficient, and an unbiased generalized Bayes estimator performs exceptionally well. Counterexamples of this sort can be useful didactic tools for explaining the true nature of a methodology and possible consequences when some of the assumptions are violated. [Received December 2014. Revised September 2015.].</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00031305.2015.1100683","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2015.1100683","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 14

Abstract

The Rao-Blackwell theorem offers a procedure for converting a crude unbiased estimator of a parameter θ into a "better" one, in fact unique and optimal if the improvement is based on a minimal sufficient statistic that is complete. In contrast, behind every minimal sufficient statistic that is not complete, there is an improvable Rao-Blackwell improvement. This is illustrated via a simple example based on the uniform distribution, in which a rather natural Rao-Blackwell improvement is uniformly improvable. Furthermore, in this example the maximum likelihood estimator is inefficient, and an unbiased generalized Bayes estimator performs exceptionally well. Counterexamples of this sort can be useful didactic tools for explaining the true nature of a methodology and possible consequences when some of the assumptions are violated. [Received December 2014. Revised September 2015.].

Abstract Image

Abstract Image

Abstract Image

改进Rao-Blackwell改进、低效极大似然估计和无偏广义贝叶斯估计的一个例子。
Rao-Blackwell定理提供了一个将参数θ的粗糙无偏估计量转化为“更好”估计量的过程,如果改进是基于一个完备的最小充分统计量,则该估计量实际上是唯一的和最优的。相反,在每一个不完备的最小充分统计量的背后,都有一个可改进的Rao-Blackwell改进。通过一个基于均匀分布的简单例子说明了这一点,其中相当自然的Rao-Blackwell改进是均匀可改进的。此外,在这个例子中,极大似然估计器是低效的,而无偏广义贝叶斯估计器表现得非常好。这种类型的反例可以是有用的教学工具,用于解释方法的真实本质以及当某些假设被违反时可能产生的后果。[2014年12月收到]2015年9月修订。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Statistician
American Statistician 数学-统计学与概率论
CiteScore
3.50
自引率
5.60%
发文量
64
审稿时长
>12 weeks
期刊介绍: Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信