Visualization of Categorical Longitudinal and Times Series Data.

Stephen J Tueller, Richard A Van Dorn, Georgiy V Bobashev
{"title":"Visualization of Categorical Longitudinal and Times Series Data.","authors":"Stephen J Tueller,&nbsp;Richard A Van Dorn,&nbsp;Georgiy V Bobashev","doi":"10.3768/rtipress.2016.mr.0033.1602","DOIUrl":null,"url":null,"abstract":"<p><p>Plotting growth curves is a powerful graphical approach used in exploratory data analysis for continuous longitudinal data. However, plotted growth curves for multiple participants rapidly become uninterpretable with categorical data. Categorical data define specific states (e.g., being single, married, divorced), and these states do not necessarily need to represent any hierarchical order. Thus, a trajectory becomes a sequence of states rather than a continuum. We introduce a horizontal line plot that uses shade or color to differentiate between states on a categorical longitudinal variable for multiple participants. With appropriate sorting, stacking the horizontal lines that represent each participant can reveal important patterns such as the shape of, or heterogeneity in, the trajectories. We illustrate the plotting techniques for large sample sizes, observed groups, the exploration of unobserved latent classes, large numbers of time points such as are found with intensive longitudinal designs or multivariate time series data, individually varying times observation, unique numbers of observations, and missing data. We used the R package longCatEDA to create the illustrations. Illustrative data include both simulated data and alcohol consumption data in adult schizophrenics from the Clinical Antipsychotic Trials of Intervention Effectiveness.</p>","PeriodicalId":88935,"journal":{"name":"Methods report (RTI Press)","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000555/pdf/nihms774453.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods report (RTI Press)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3768/rtipress.2016.mr.0033.1602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Plotting growth curves is a powerful graphical approach used in exploratory data analysis for continuous longitudinal data. However, plotted growth curves for multiple participants rapidly become uninterpretable with categorical data. Categorical data define specific states (e.g., being single, married, divorced), and these states do not necessarily need to represent any hierarchical order. Thus, a trajectory becomes a sequence of states rather than a continuum. We introduce a horizontal line plot that uses shade or color to differentiate between states on a categorical longitudinal variable for multiple participants. With appropriate sorting, stacking the horizontal lines that represent each participant can reveal important patterns such as the shape of, or heterogeneity in, the trajectories. We illustrate the plotting techniques for large sample sizes, observed groups, the exploration of unobserved latent classes, large numbers of time points such as are found with intensive longitudinal designs or multivariate time series data, individually varying times observation, unique numbers of observations, and missing data. We used the R package longCatEDA to create the illustrations. Illustrative data include both simulated data and alcohol consumption data in adult schizophrenics from the Clinical Antipsychotic Trials of Intervention Effectiveness.

Abstract Image

Abstract Image

Abstract Image

分类纵向和时间序列数据的可视化。
绘制增长曲线是一种强大的图形方法,用于连续纵向数据的探索性数据分析。然而,绘制的多个参与者的增长曲线很快变得无法解释与分类数据。分类数据定义了特定的状态(例如,单身、已婚、离婚),这些状态不一定需要表示任何等级顺序。这样,轨迹就变成了状态的序列,而不是连续体。我们引入了一个水平线图,它使用阴影或颜色来区分多个参与者在分类纵向变量上的状态。通过适当的排序,叠加代表每个参与者的水平线可以揭示重要的模式,例如轨迹的形状或异质性。我们说明了大样本量、观察组、探索未观察到的潜在类别、大量时间点(如密集的纵向设计或多变量时间序列数据)、单独变化的时间观察、唯一的观察数和缺失数据的绘图技术。我们使用R包longCatEDA来创建插图。说明性数据包括来自临床抗精神病药物干预有效性试验的成人精神分裂症患者的模拟数据和酒精消耗数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信