{"title":"The Central Role of Bayes' Theorem for Joint Estimation of Causal Effects and Propensity Scores.","authors":"Corwin Matthew Zigler","doi":"10.1080/00031305.2015.1111260","DOIUrl":null,"url":null,"abstract":"<p><p>Although propensity scores have been central to the estimation of causal effects for over 30 years, only recently has the statistical literature begun to consider in detail methods for Bayesian estimation of propensity scores and causal effects. Underlying this recent body of literature on Bayesian propensity score estimation is an implicit discordance between the goal of the propensity score and the use of Bayes theorem. The propensity score condenses multivariate covariate information into a scalar to allow estimation of causal effects without specifying a model for how each covariate relates to the outcome. Avoiding specification of a detailed model for the outcome response surface is valuable for robust estimation of causal effects, but this strategy is at odds with the use of Bayes theorem, which presupposes a full probability model for the observed data that adheres to the likelihood principle. The goal of this paper is to explicate this fundamental feature of Bayesian estimation of causal effects with propensity scores in order to provide context for the existing literature and for future work on this important topic.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00031305.2015.1111260","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2015.1111260","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/12/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 40
Abstract
Although propensity scores have been central to the estimation of causal effects for over 30 years, only recently has the statistical literature begun to consider in detail methods for Bayesian estimation of propensity scores and causal effects. Underlying this recent body of literature on Bayesian propensity score estimation is an implicit discordance between the goal of the propensity score and the use of Bayes theorem. The propensity score condenses multivariate covariate information into a scalar to allow estimation of causal effects without specifying a model for how each covariate relates to the outcome. Avoiding specification of a detailed model for the outcome response surface is valuable for robust estimation of causal effects, but this strategy is at odds with the use of Bayes theorem, which presupposes a full probability model for the observed data that adheres to the likelihood principle. The goal of this paper is to explicate this fundamental feature of Bayesian estimation of causal effects with propensity scores in order to provide context for the existing literature and for future work on this important topic.
期刊介绍:
Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.