Alaa Hamadi , Leticia Carneiro Piton , Said Abid , Nabiha Chaumeix , Andrea Comandini
{"title":"Combined high-pressure experimental and kinetic modeling study of cyclopentene pyrolysis and its reactions with acetylene","authors":"Alaa Hamadi , Leticia Carneiro Piton , Said Abid , Nabiha Chaumeix , Andrea Comandini","doi":"10.1016/j.proci.2022.07.023","DOIUrl":null,"url":null,"abstract":"<div><p>A combined experimental and kinetic modeling study is presented to improve the understanding of the formation of polycyclic aromatic hydrocarbons (PAHs) from neat cyclopentene and cyclopentene/acetylene mixtures. High-pressure experiments are conducted for the first time over a temperature range covering 930–1650 K using a single-pulse shock tube coupled to gas chromatography/gas chromatography-mass spectrometry (GC/GC–MS) techniques. Several updates and inclusions, mainly regarding the reactions involving C<sub>5</sub> molecules and radicals, are made in our on-going PAH kinetic model, which shows satisfactory predictive performances for the speciation measurements obtained in the current work and in the literature. On the basis of the experimental observations and modeling analyses, the reaction pathways active during the pyrolysis of cyclopentene are illustrated and the effects of acetylene addition as co-reactant on the PAH chemistry are assessed. In all of the cases investigated, it is noted that the cyclopentadienyl radical largely participate in the formation of mono-aromatic hydrocarbons (benzene and styrene) and PAHs (indene, naphthalene and phenanthrene).</p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 1","pages":"Pages 95-104"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922000487","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
A combined experimental and kinetic modeling study is presented to improve the understanding of the formation of polycyclic aromatic hydrocarbons (PAHs) from neat cyclopentene and cyclopentene/acetylene mixtures. High-pressure experiments are conducted for the first time over a temperature range covering 930–1650 K using a single-pulse shock tube coupled to gas chromatography/gas chromatography-mass spectrometry (GC/GC–MS) techniques. Several updates and inclusions, mainly regarding the reactions involving C5 molecules and radicals, are made in our on-going PAH kinetic model, which shows satisfactory predictive performances for the speciation measurements obtained in the current work and in the literature. On the basis of the experimental observations and modeling analyses, the reaction pathways active during the pyrolysis of cyclopentene are illustrated and the effects of acetylene addition as co-reactant on the PAH chemistry are assessed. In all of the cases investigated, it is noted that the cyclopentadienyl radical largely participate in the formation of mono-aromatic hydrocarbons (benzene and styrene) and PAHs (indene, naphthalene and phenanthrene).
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.