{"title":"Gold and silver nanoparticles as tools to combat multidrug-resistant pathogens","authors":"Arianna Balestri , Jacopo Cardellini , Debora Berti","doi":"10.1016/j.cocis.2023.101710","DOIUrl":null,"url":null,"abstract":"<div><p><span>The sudden emergence and rapid spreading of viral, bacterial, and fungal infections and the usual development of resistance against traditional molecular drugs prompt the urgent need for alternative approaches to kill or inactivate pathogenic agents. This motivation has inspired a vast number of research works devoted to the design, synthesis, and application of nanomaterials, specifically inorganic plasmonic </span>nanoparticles<span>, as antimicrobial agents. We will pay special attention to articles from 2019 to 2023 where control of the colloidal properties, i.e., size, morphology, and colloidal stability, are properly considered. Here we will discuss the latest advancement in synthesis, colloidal characterization, and antimicrobial activity of Au and Ag nanoparticles, as well as hybrid systems based on combining metallic NPs with inorganic and organic materials. We will also consider contributions focusing on the green synthesis of plasmonic particles, highlighting the opportunities and the need for better control and predictivity of colloidal and functional properties.</span></p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"66 ","pages":"Article 101710"},"PeriodicalIF":7.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000353","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
The sudden emergence and rapid spreading of viral, bacterial, and fungal infections and the usual development of resistance against traditional molecular drugs prompt the urgent need for alternative approaches to kill or inactivate pathogenic agents. This motivation has inspired a vast number of research works devoted to the design, synthesis, and application of nanomaterials, specifically inorganic plasmonic nanoparticles, as antimicrobial agents. We will pay special attention to articles from 2019 to 2023 where control of the colloidal properties, i.e., size, morphology, and colloidal stability, are properly considered. Here we will discuss the latest advancement in synthesis, colloidal characterization, and antimicrobial activity of Au and Ag nanoparticles, as well as hybrid systems based on combining metallic NPs with inorganic and organic materials. We will also consider contributions focusing on the green synthesis of plasmonic particles, highlighting the opportunities and the need for better control and predictivity of colloidal and functional properties.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.