Theory of nuclear fission

IF 14.5 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Nicolas Schunck , David Regnier
{"title":"Theory of nuclear fission","authors":"Nicolas Schunck ,&nbsp;David Regnier","doi":"10.1016/j.ppnp.2022.103963","DOIUrl":null,"url":null,"abstract":"<div><p><span>Atomic nuclei are quantum many-body systems of protons and neutrons held together by strong nuclear forces. Under the proper conditions, nuclei can break into two (sometimes three) fragments which will subsequently decay by emitting particles. This phenomenon is called nuclear fission. Since different fission events may produce different fragmentations, the end-products of all fissions that occurred in a small chemical sample of matter comprise hundreds of different isotopes, including </span><span><math><mi>α</mi></math></span><span> particles, together with a large number of emitted neutrons, photons, electrons and antineutrinos. The extraordinary complexity of this process, which happens at length scales of the order of a femtometer, mostly takes less than a femtosecond but is not entirely over until all the lingering </span><span><math><mi>β</mi></math></span><span> decays have completed – which can take years – is a fascinating window into the physics of atomic nuclei. While fission may be more naturally known in the context of its technological applications, it also plays a crucial role in the synthesis of heavy elements in astrophysical environments. In both cases, simulations are needed for the many systems or energies inaccessible to experiments in the laboratory. In this context, the level of accuracy and precision required poses formidable challenges to nuclear theory. The goal of this article is to provide a comprehensive overview of the theoretical methods employed in the description of nuclear fission.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"125 ","pages":"Article 103963"},"PeriodicalIF":14.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641022000242","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 20

Abstract

Atomic nuclei are quantum many-body systems of protons and neutrons held together by strong nuclear forces. Under the proper conditions, nuclei can break into two (sometimes three) fragments which will subsequently decay by emitting particles. This phenomenon is called nuclear fission. Since different fission events may produce different fragmentations, the end-products of all fissions that occurred in a small chemical sample of matter comprise hundreds of different isotopes, including α particles, together with a large number of emitted neutrons, photons, electrons and antineutrinos. The extraordinary complexity of this process, which happens at length scales of the order of a femtometer, mostly takes less than a femtosecond but is not entirely over until all the lingering β decays have completed – which can take years – is a fascinating window into the physics of atomic nuclei. While fission may be more naturally known in the context of its technological applications, it also plays a crucial role in the synthesis of heavy elements in astrophysical environments. In both cases, simulations are needed for the many systems or energies inaccessible to experiments in the laboratory. In this context, the level of accuracy and precision required poses formidable challenges to nuclear theory. The goal of this article is to provide a comprehensive overview of the theoretical methods employed in the description of nuclear fission.

核裂变理论
原子核是质子和中子在强核力作用下结合在一起的量子多体系统。在适当的条件下,原子核可以分裂成两个(有时是三个)碎片,这些碎片随后会通过释放粒子而衰变。这种现象被称为核裂变。由于不同的裂变事件可能产生不同的碎片,在一个小的化学物质样本中发生的所有裂变的最终产物包括数百种不同的同位素,包括α粒子,以及大量发射的中子、光子、电子和反中微子。这个异常复杂的过程发生在一个飞米量级的尺度上,大部分时间不到一飞秒,但直到所有的β衰变完成才会完全结束——这可能需要数年时间——这是原子核物理学的一个迷人的窗口。虽然裂变在其技术应用的背景下可能更自然地为人所知,但它在天体物理环境中重元素的合成中也起着至关重要的作用。在这两种情况下,都需要对许多无法在实验室中进行实验的系统或能量进行模拟。在这种情况下,所需的准确度和精度水平对核理论提出了巨大的挑战。本文的目的是对描述核裂变所采用的理论方法作一个全面的概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Particle and Nuclear Physics
Progress in Particle and Nuclear Physics 物理-物理:核物理
CiteScore
24.50
自引率
3.10%
发文量
41
审稿时长
72 days
期刊介绍: Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信