Haozhang Zhong , Tingting Song , Chuanwei Li , Raj Das , Jianfeng Gu , Ma Qian
{"title":"The Gibson-Ashby model for additively manufactured metal lattice materials: Its theoretical basis, limitations and new insights from remedies","authors":"Haozhang Zhong , Tingting Song , Chuanwei Li , Raj Das , Jianfeng Gu , Ma Qian","doi":"10.1016/j.cossms.2023.101081","DOIUrl":null,"url":null,"abstract":"<div><p>The Gibson-Ashby (G-A) model has been instrumental in the design of additively manufactured (AM-ed) metal lattice materials or mechanical metamaterials. The first part of this work reviews the proposition and formulation of the G-A model and emphasizes that the G-A model is only applicable to low-density lattice materials with strut length-to-diameter ratios greater than 5. The second part evaluates the applicability of the G-A model to AM-ed metal lattice materials and reveals the fundamental disconnections between them. The third part assesses the deformation mechanisms of AM-ed metal lattices in relation to their strut length-to-diameter ratios and identifies that AM-ed metal lattices deform by concurrent bending, stretching, and shear, rather than just stretching or bending considered by the G-A model. Consequently, mechanical property models coupling stretching, bending and shear deformation mechanisms are developed for various lattice materials, which show high congruence with experimental data. The last part discusses new insights obtained from these remedies into the design of strong and stiff metal lattices. In particular, we recommend that the use of inclined struts be avoided.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 3","pages":"Article 101081"},"PeriodicalIF":12.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028623000268","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
The Gibson-Ashby (G-A) model has been instrumental in the design of additively manufactured (AM-ed) metal lattice materials or mechanical metamaterials. The first part of this work reviews the proposition and formulation of the G-A model and emphasizes that the G-A model is only applicable to low-density lattice materials with strut length-to-diameter ratios greater than 5. The second part evaluates the applicability of the G-A model to AM-ed metal lattice materials and reveals the fundamental disconnections between them. The third part assesses the deformation mechanisms of AM-ed metal lattices in relation to their strut length-to-diameter ratios and identifies that AM-ed metal lattices deform by concurrent bending, stretching, and shear, rather than just stretching or bending considered by the G-A model. Consequently, mechanical property models coupling stretching, bending and shear deformation mechanisms are developed for various lattice materials, which show high congruence with experimental data. The last part discusses new insights obtained from these remedies into the design of strong and stiff metal lattices. In particular, we recommend that the use of inclined struts be avoided.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field