{"title":"Role of tumour necrosis factor-a in the regulation of T-type calcium channel current in HL-1 cells.","authors":"Fang Rao, Yu-Mei Xue, Wei Wei, Hui Yang, Fang-Zhou Liu, Shao-Xian Chen, Su-Juan Kuang, Jie-Ning Zhu, Shu-Lin Wu, Chun-Yu Deng","doi":"10.1111/1440-1681.12585","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence indicates that inflammation contributes to the initiation and perpetuation of atrial fibrillation (AF). Although tumour necrosis factor (TNF)-α levels are increased in patients with AF, the role of TNF-α in the pathogenesis of AF remains unclear. Besides L-type Ca(2+) currents (IC a,L ), T-type Ca(2+) currents (IC a,T ) also plays an important role in the pathogenesis of AF. This study was designed to use the whole-cell voltage-clamp technique and biochemical assays to explore if TNF-α is involved in the pathogenesis of AF through regulating IC a,T in atrial myocytes. It was found that compared with sinus rhythm (SR) controls, T-type calcium channel (TCC) subunit mRNA levels were decreased, while TNF-α expression levels were increased, in human atrial tissue from patients with AF. In murine atrial myocyte HL-1 cells, after culturing for 24 h, 12.5, 25 and 50 ng/mL TNF-α significantly reduced the protein expression levels of the TCC α1G subunit in a concentration-dependent manner. The peak current was reduced by the application of 12.5 or 25 ng/mL TNF-α in a concentration-dependent manner (from -15.08 ± 1.11 pA/pF in controls to -11.89 ± 0.83 pA/pF and -8.54 ± 1.55 pA/pF in 12.5 or 25 ng/mL TNF-α group respectively). TNF-α application also inhibited voltage-dependent inactivation of IC a,T, shifted the inactivation curve to the left. These results suggest that TNF-α is involved in the pathogenesis of AF, probably via decreasing IC a,T current density in atrium-derived myocytes through impaired channel function and down-regulation of channel protein expression. This pathway thus represents a potential pathogenic mechanism in AF.</p>","PeriodicalId":10259,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"43 7","pages":"706-11"},"PeriodicalIF":2.4000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1440-1681.12585","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1440-1681.12585","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 14
Abstract
Increasing evidence indicates that inflammation contributes to the initiation and perpetuation of atrial fibrillation (AF). Although tumour necrosis factor (TNF)-α levels are increased in patients with AF, the role of TNF-α in the pathogenesis of AF remains unclear. Besides L-type Ca(2+) currents (IC a,L ), T-type Ca(2+) currents (IC a,T ) also plays an important role in the pathogenesis of AF. This study was designed to use the whole-cell voltage-clamp technique and biochemical assays to explore if TNF-α is involved in the pathogenesis of AF through regulating IC a,T in atrial myocytes. It was found that compared with sinus rhythm (SR) controls, T-type calcium channel (TCC) subunit mRNA levels were decreased, while TNF-α expression levels were increased, in human atrial tissue from patients with AF. In murine atrial myocyte HL-1 cells, after culturing for 24 h, 12.5, 25 and 50 ng/mL TNF-α significantly reduced the protein expression levels of the TCC α1G subunit in a concentration-dependent manner. The peak current was reduced by the application of 12.5 or 25 ng/mL TNF-α in a concentration-dependent manner (from -15.08 ± 1.11 pA/pF in controls to -11.89 ± 0.83 pA/pF and -8.54 ± 1.55 pA/pF in 12.5 or 25 ng/mL TNF-α group respectively). TNF-α application also inhibited voltage-dependent inactivation of IC a,T, shifted the inactivation curve to the left. These results suggest that TNF-α is involved in the pathogenesis of AF, probably via decreasing IC a,T current density in atrium-derived myocytes through impaired channel function and down-regulation of channel protein expression. This pathway thus represents a potential pathogenic mechanism in AF.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.