{"title":"Molecular Determinants of Cav1.2 Calcium Channel Inactivation.","authors":"Nikolai M Soldatov","doi":"10.5402/2012/691341","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage-gated L-type Cav1.2 calcium channels couple membrane depolarization to transient increase in cytoplasmic free Ca(2+) concentration that initiates a number of essential cellular functions including cardiac and vascular muscle contraction, gene expression, neuronal plasticity, and exocytosis. Inactivation or spontaneous termination of the calcium current through Cav1.2 is a critical step in regulation of these processes. The pathophysiological significance of this process is manifested in hypertension, heart failure, arrhythmia, and a number of other diseases where acceleration of the calcium current decay should present a benefit function. The central issue of this paper is the inactivation of the Cav1.2 calcium channel mediated by multiple determinants. </p>","PeriodicalId":89785,"journal":{"name":"ISRN molecular biology","volume":"2012 ","pages":"691341"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890872/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2012/691341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Voltage-gated L-type Cav1.2 calcium channels couple membrane depolarization to transient increase in cytoplasmic free Ca(2+) concentration that initiates a number of essential cellular functions including cardiac and vascular muscle contraction, gene expression, neuronal plasticity, and exocytosis. Inactivation or spontaneous termination of the calcium current through Cav1.2 is a critical step in regulation of these processes. The pathophysiological significance of this process is manifested in hypertension, heart failure, arrhythmia, and a number of other diseases where acceleration of the calcium current decay should present a benefit function. The central issue of this paper is the inactivation of the Cav1.2 calcium channel mediated by multiple determinants.