{"title":"Relationship between mitochondrial haplogroup and physiological responses to hypobaric hypoxia.","authors":"Midori Motoi, Takayuki Nishimura, Yuka Egashira, Fumi Kishida, Shigeki Watanuki","doi":"10.1186/s40101-016-0094-6","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to investigate the relationship between mtDNA polymorphism and physiological responses to hypobaric hypoxia. The study included 28 healthy male students, consisting of 18 students in haplogroup D and 10 in haplogroup M7+G. Measurement sensors were attached to the participants for approximately 30 min in an environment with a temperature of 28 °C. After resting for 15 min, the programmed operation of the hypobaric chamber decreased the atmospheric pressure by 11.9 Torr every minute to simulate an increase in altitude of 150 m until 9.7 Torr (equivalent to 2500 m) and then decreased 9.7 Torr every minute until 465 Torr (equivalent to 4000 m). At each altitude, the pressure was maintained for 15 min and various measurements were taken. Haplogroup D showed higher SpO2 (p < 0.05) and significantly higher SpO2 during the pressure recovery period when compared with haplogroup M7+G. The distal skin temperature was higher in haplogroup D when compared with M7+G. These results suggested that haplogroup D maintained SpO2 at a higher level with higher peripheral blood flow during acute hypobaric exposure.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-016-0094-6","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Anthropology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40101-016-0094-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
We aimed to investigate the relationship between mtDNA polymorphism and physiological responses to hypobaric hypoxia. The study included 28 healthy male students, consisting of 18 students in haplogroup D and 10 in haplogroup M7+G. Measurement sensors were attached to the participants for approximately 30 min in an environment with a temperature of 28 °C. After resting for 15 min, the programmed operation of the hypobaric chamber decreased the atmospheric pressure by 11.9 Torr every minute to simulate an increase in altitude of 150 m until 9.7 Torr (equivalent to 2500 m) and then decreased 9.7 Torr every minute until 465 Torr (equivalent to 4000 m). At each altitude, the pressure was maintained for 15 min and various measurements were taken. Haplogroup D showed higher SpO2 (p < 0.05) and significantly higher SpO2 during the pressure recovery period when compared with haplogroup M7+G. The distal skin temperature was higher in haplogroup D when compared with M7+G. These results suggested that haplogroup D maintained SpO2 at a higher level with higher peripheral blood flow during acute hypobaric exposure.
期刊介绍:
Journal of Physiological Anthropology (JPA) is an open access, peer-reviewed journal that publishes research on the physiological functions of modern mankind, with an emphasis on the physical and bio-cultural effects on human adaptability to the current environment.
The objective of JPA is to evaluate physiological adaptations to modern living environments, and to publish research from different scientific fields concerned with environmental impact on human life.
Topic areas include, but are not limited to:
environmental physiology
bio-cultural environment
living environment
epigenetic adaptation
development and growth
age and sex differences
nutrition and morphology
physical fitness and health
Journal of Physiological Anthropology is the official journal of the Japan Society of Physiological Anthropology.