Relationship between mitochondrial haplogroup and physiological responses to hypobaric hypoxia.

IF 3.3 4区 医学 Q1 PHYSIOLOGY
Midori Motoi, Takayuki Nishimura, Yuka Egashira, Fumi Kishida, Shigeki Watanuki
{"title":"Relationship between mitochondrial haplogroup and physiological responses to hypobaric hypoxia.","authors":"Midori Motoi,&nbsp;Takayuki Nishimura,&nbsp;Yuka Egashira,&nbsp;Fumi Kishida,&nbsp;Shigeki Watanuki","doi":"10.1186/s40101-016-0094-6","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to investigate the relationship between mtDNA polymorphism and physiological responses to hypobaric hypoxia. The study included 28 healthy male students, consisting of 18 students in haplogroup D and 10 in haplogroup M7+G. Measurement sensors were attached to the participants for approximately 30 min in an environment with a temperature of 28 °C. After resting for 15 min, the programmed operation of the hypobaric chamber decreased the atmospheric pressure by 11.9 Torr every minute to simulate an increase in altitude of 150 m until 9.7 Torr (equivalent to 2500 m) and then decreased 9.7 Torr every minute until 465 Torr (equivalent to 4000 m). At each altitude, the pressure was maintained for 15 min and various measurements were taken. Haplogroup D showed higher SpO2 (p < 0.05) and significantly higher SpO2 during the pressure recovery period when compared with haplogroup M7+G. The distal skin temperature was higher in haplogroup D when compared with M7+G. These results suggested that haplogroup D maintained SpO2 at a higher level with higher peripheral blood flow during acute hypobaric exposure.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-016-0094-6","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Anthropology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40101-016-0094-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 9

Abstract

We aimed to investigate the relationship between mtDNA polymorphism and physiological responses to hypobaric hypoxia. The study included 28 healthy male students, consisting of 18 students in haplogroup D and 10 in haplogroup M7+G. Measurement sensors were attached to the participants for approximately 30 min in an environment with a temperature of 28 °C. After resting for 15 min, the programmed operation of the hypobaric chamber decreased the atmospheric pressure by 11.9 Torr every minute to simulate an increase in altitude of 150 m until 9.7 Torr (equivalent to 2500 m) and then decreased 9.7 Torr every minute until 465 Torr (equivalent to 4000 m). At each altitude, the pressure was maintained for 15 min and various measurements were taken. Haplogroup D showed higher SpO2 (p < 0.05) and significantly higher SpO2 during the pressure recovery period when compared with haplogroup M7+G. The distal skin temperature was higher in haplogroup D when compared with M7+G. These results suggested that haplogroup D maintained SpO2 at a higher level with higher peripheral blood flow during acute hypobaric exposure.

Abstract Image

Abstract Image

Abstract Image

线粒体单倍群与低气压缺氧生理反应的关系。
我们旨在研究mtDNA多态性与低氧生理反应之间的关系。本研究纳入28名健康男生,其中单倍群D 18名,M7+G 10名。在温度为28°C的环境中,将测量传感器附着在参与者身上约30分钟。静息15分钟后,低压舱的程序化运行使大气压每分钟降低11.9托,模拟海拔从150米上升到9.7托(相当于2500米),然后每分钟降低9.7托(相当于4000米)。在每个海拔高度,压力保持15分钟,并进行各种测量。单倍群D表现出较高的SpO2 (p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
6.50%
发文量
39
期刊介绍: Journal of Physiological Anthropology (JPA) is an open access, peer-reviewed journal that publishes research on the physiological functions of modern mankind, with an emphasis on the physical and bio-cultural effects on human adaptability to the current environment. The objective of JPA is to evaluate physiological adaptations to modern living environments, and to publish research from different scientific fields concerned with environmental impact on human life. Topic areas include, but are not limited to: environmental physiology bio-cultural environment living environment epigenetic adaptation development and growth age and sex differences nutrition and morphology physical fitness and health Journal of Physiological Anthropology is the official journal of the Japan Society of Physiological Anthropology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信