Begona M Escribano, Abel Santamaría, María E de Lima, Francisco J Medina-Fernández, Shahid Bashir, Isaac Túnez
{"title":"Brain Magnetic Stimulation in Animal Models: A Valuable Lesson for Clinical Applications.","authors":"Begona M Escribano, Abel Santamaría, María E de Lima, Francisco J Medina-Fernández, Shahid Bashir, Isaac Túnez","doi":"10.2174/1871527315666160527152547","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial magnetic stimulation (TMS) is more than a mere tool for clinical non-invasive approaches to stimulate and synchronize the neuronal activity in the brain. Electromagnetic stimulation through TMS has recently emerged as a therapeutic alternative for the treatment of different neurological disorders. Among the many properties recently discovered for TMS, its action as an accounting factor for neuroplasticity and neurogenesis is among its most promising features. Translational studies in animal models offer various advantages and also bridge this knowledge gap due to their direct assessment of the brain stimulation impact at the neural level. These profiles have been obtained through the study of animal models, which, in turn, have served for the establishment of the action mechanisms of this method. In this review, we revise and discuss evidence collected on the promising properties of TMS after visiting the different animal models developed so far, and provide a practical perspective of its possible application for clinical purposes.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":"15 7","pages":"845-56"},"PeriodicalIF":3.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871527315666160527152547","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 5
Abstract
Transcranial magnetic stimulation (TMS) is more than a mere tool for clinical non-invasive approaches to stimulate and synchronize the neuronal activity in the brain. Electromagnetic stimulation through TMS has recently emerged as a therapeutic alternative for the treatment of different neurological disorders. Among the many properties recently discovered for TMS, its action as an accounting factor for neuroplasticity and neurogenesis is among its most promising features. Translational studies in animal models offer various advantages and also bridge this knowledge gap due to their direct assessment of the brain stimulation impact at the neural level. These profiles have been obtained through the study of animal models, which, in turn, have served for the establishment of the action mechanisms of this method. In this review, we revise and discuss evidence collected on the promising properties of TMS after visiting the different animal models developed so far, and provide a practical perspective of its possible application for clinical purposes.
期刊介绍:
Aims & Scope
CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes.
CNS & Neurological Disorders - Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies.
As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.