Engineered AAV vectors for improved central nervous system gene delivery.

Neurogenesis (Austin, Tex.) Pub Date : 2015-12-03 eCollection Date: 2015-01-01 DOI:10.1080/23262133.2015.1122700
Melissa A Kotterman, David V Schaffer
{"title":"Engineered AAV vectors for improved central nervous system gene delivery.","authors":"Melissa A Kotterman,&nbsp;David V Schaffer","doi":"10.1080/23262133.2015.1122700","DOIUrl":null,"url":null,"abstract":"<p><p>Adeno-associated viruses (AAV) are non-pathogenic members of the Parvoviridae family that are being harnessed as delivery vehicles for both basic research and increasingly successful clinical gene therapy. To address a number of delivery shortcomings with natural AAV variants, we have developed and implemented directed evolution-a high-throughput molecular engineering approach to generate novel biomolecules with enhanced function-to create novel AAV vectors that are designed to preferentially transduce specific cell types in the central nervous system (CNS), including astrocytes, neural stem cells, and cells within the retina. These novel AAV vectors-which have enhanced infectivity in vitro and enhanced infectivity and selectivity in vivo-can enable more efficient studies to further our understanding of neurogenesis, development, aging, and disease. Furthermore, such engineered vectors may aid gene or cell replacement therapies to treat neurodegenerative disease or injury. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2015.1122700","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenesis (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23262133.2015.1122700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Adeno-associated viruses (AAV) are non-pathogenic members of the Parvoviridae family that are being harnessed as delivery vehicles for both basic research and increasingly successful clinical gene therapy. To address a number of delivery shortcomings with natural AAV variants, we have developed and implemented directed evolution-a high-throughput molecular engineering approach to generate novel biomolecules with enhanced function-to create novel AAV vectors that are designed to preferentially transduce specific cell types in the central nervous system (CNS), including astrocytes, neural stem cells, and cells within the retina. These novel AAV vectors-which have enhanced infectivity in vitro and enhanced infectivity and selectivity in vivo-can enable more efficient studies to further our understanding of neurogenesis, development, aging, and disease. Furthermore, such engineered vectors may aid gene or cell replacement therapies to treat neurodegenerative disease or injury.

改良中枢神经系统基因传递的工程AAV载体。
腺相关病毒(AAV)是细小病毒科的非致病性成员,被用作基础研究和越来越成功的临床基因治疗的运载工具。为了解决天然AAV变体的一些传递缺陷,我们开发并实施了定向进化-一种高通量分子工程方法,以产生具有增强功能的新型生物分子-创建新的AAV载体,旨在优先转导中枢神经系统(CNS)中的特定细胞类型,包括星形胶质细胞,神经干细胞和视网膜内的细胞。这些新型AAV载体在体外具有增强的传染性,在体内具有增强的传染性和选择性,可以使我们更有效地研究神经发生、发育、衰老和疾病。此外,这种工程载体可能有助于基因或细胞替代疗法治疗神经退行性疾病或损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信