The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells.

Lap Man Lee, Allen P Liu
{"title":"The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells.","authors":"Lap Man Lee,&nbsp;Allen P Liu","doi":"10.1115/1.4029936","DOIUrl":null,"url":null,"abstract":"<p><p>Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by micro/nanotechnology, several novel microfluidic devices have been developed recently with better accuracy, sensitivity, and throughput. Further technical advancements of microfluidics-based micropipette aspiration would have broad applications in both fundamental cell mechanics studies and for disease diagnostics.</p>","PeriodicalId":73845,"journal":{"name":"Journal of nanotechnology in engineering and medicine","volume":"5 4","pages":"0408011-408016"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029936","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology in engineering and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4029936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by micro/nanotechnology, several novel microfluidic devices have been developed recently with better accuracy, sensitivity, and throughput. Further technical advancements of microfluidics-based micropipette aspiration would have broad applications in both fundamental cell mechanics studies and for disease diagnostics.

Abstract Image

Abstract Image

Abstract Image

微管抽吸在单细胞分子力学中的应用。
微管抽吸可以说是单细胞机械测量和操作中最经典的技术。尽管它很简单,但微移管抽吸已被应用于各种不同长度尺度的实验系统中,以研究细胞力学、单细胞中的纳米级分子机制、气泡生长和细胞核动力学等。在微/纳米技术的支持下,最近开发出了几种具有更好的精度、灵敏度和通量的新型微流体装置。基于微流体的微管抽吸技术的进一步发展将在基础细胞力学研究和疾病诊断方面具有广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信