Three Redundant Synthetases Secure Redox-Active Pigment Production in the Basidiomycete Paxillus involutus.

Jana Braesel, Sebastian Götze, Firoz Shah, Daniel Heine, James Tauber, Christian Hertweck, Anders Tunlid, Pierre Stallforth, Dirk Hoffmeister
{"title":"Three Redundant Synthetases Secure Redox-Active Pigment Production in the Basidiomycete Paxillus involutus.","authors":"Jana Braesel,&nbsp;Sebastian Götze,&nbsp;Firoz Shah,&nbsp;Daniel Heine,&nbsp;James Tauber,&nbsp;Christian Hertweck,&nbsp;Anders Tunlid,&nbsp;Pierre Stallforth,&nbsp;Dirk Hoffmeister","doi":"10.1016/j.chembiol.2015.08.016","DOIUrl":null,"url":null,"abstract":"<p><p>The symbiotic fungus Paxillus involutus serves a critical role in maintaining forest ecosystems, which are carbon sinks of global importance. P. involutus produces involutin and other 2,5-diarylcyclopentenone pigments that presumably assist in the oxidative degradation of lignocellulose via Fenton chemistry. Their precise biosynthetic pathways, however, remain obscure. Using a combination of biochemical, genetic, and transcriptomic analyses, in addition to stable-isotope labeling with synthetic precursors, we show that atromentin is the key intermediate. Atromentin is made by tridomain synthetases of high similarity: InvA1, InvA2, and InvA5. An inactive atromentin synthetase, InvA3, gained activity after a domain swap that replaced its native thioesterase domain with that of InvA5. The found degree of multiplex biosynthetic capacity is unprecedented with fungi, and highlights the great importance of the metabolite for the producer. </p>","PeriodicalId":9772,"journal":{"name":"Chemistry & biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.08.016","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2015.08.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

The symbiotic fungus Paxillus involutus serves a critical role in maintaining forest ecosystems, which are carbon sinks of global importance. P. involutus produces involutin and other 2,5-diarylcyclopentenone pigments that presumably assist in the oxidative degradation of lignocellulose via Fenton chemistry. Their precise biosynthetic pathways, however, remain obscure. Using a combination of biochemical, genetic, and transcriptomic analyses, in addition to stable-isotope labeling with synthetic precursors, we show that atromentin is the key intermediate. Atromentin is made by tridomain synthetases of high similarity: InvA1, InvA2, and InvA5. An inactive atromentin synthetase, InvA3, gained activity after a domain swap that replaced its native thioesterase domain with that of InvA5. The found degree of multiplex biosynthetic capacity is unprecedented with fungi, and highlights the great importance of the metabolite for the producer.

三种冗余合成酶保证担子菌氧化还原活性色素的生产。
共生真菌Paxillus involutus在维持森林生态系统中起着至关重要的作用,森林生态系统是全球重要的碳汇。P. involutus产生渐开线蛋白和其他2,5-二芳基环戊酮色素,可能通过芬顿化学有助于木质纤维素的氧化降解。然而,它们精确的生物合成途径仍然不清楚。结合生化、遗传和转录组学分析,以及合成前体的稳定同位素标记,我们表明atromentin是关键的中间体。Atromentin是由高度相似的三结构域合成酶InvA1, InvA2和InvA5合成的。失活的atromentin合成酶InvA3在用InvA5取代其天然硫酯酶结构域后获得活性。发现的多重生物合成能力程度是真菌前所未有的,并突出了代谢物对生产者的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry & biology
Chemistry & biology 生物-生化与分子生物学
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信