Wenyi Li, Neil M O'Brien-Simpson, Julien Tailhades, Namfon Pantarat, Raymond M Dawson, Laszlo Otvos, Eric C Reynolds, Frances Separovic, Mohammed Akhter Hossain, John D Wade
{"title":"Multimerization of a Proline-Rich Antimicrobial Peptide, Chex-Arg20, Alters Its Mechanism of Interaction with the Escherichia coli Membrane.","authors":"Wenyi Li, Neil M O'Brien-Simpson, Julien Tailhades, Namfon Pantarat, Raymond M Dawson, Laszlo Otvos, Eric C Reynolds, Frances Separovic, Mohammed Akhter Hossain, John D Wade","doi":"10.1016/j.chembiol.2015.08.011","DOIUrl":null,"url":null,"abstract":"<p><p>A3-APO, a de novo designed branched dimeric proline-rich antimicrobial peptide (PrAMP), is highly effective against a variety of in vivo bacterial infections. We undertook a selective examination of the mechanism for the Gram-negative Escherichia coli bacterial membrane interaction of the monomer (Chex-Arg20), dimer (A3-APO), and tetramer (A3-APO disulfide-linked dimer). All three synthetic peptides were effective at killing E. coli. However, the tetramer was 30-fold more membrane disruptive than the dimer while the monomer showed no membrane activity. Using flow cytometry and high-resolution fluorescent microscopy, it was observed that dimerization and tetramerization of the Chex-Arg20 monomer led to an alteration in the mechanism of action from non-lytic/membrane hyperpolarization to membrane disruption/depolarization. Our findings show that the membrane interaction and permeability of Chex-Arg20 was altered by multimerization.</p>","PeriodicalId":9772,"journal":{"name":"Chemistry & biology","volume":" ","pages":"1250-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.08.011","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2015.08.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48
Abstract
A3-APO, a de novo designed branched dimeric proline-rich antimicrobial peptide (PrAMP), is highly effective against a variety of in vivo bacterial infections. We undertook a selective examination of the mechanism for the Gram-negative Escherichia coli bacterial membrane interaction of the monomer (Chex-Arg20), dimer (A3-APO), and tetramer (A3-APO disulfide-linked dimer). All three synthetic peptides were effective at killing E. coli. However, the tetramer was 30-fold more membrane disruptive than the dimer while the monomer showed no membrane activity. Using flow cytometry and high-resolution fluorescent microscopy, it was observed that dimerization and tetramerization of the Chex-Arg20 monomer led to an alteration in the mechanism of action from non-lytic/membrane hyperpolarization to membrane disruption/depolarization. Our findings show that the membrane interaction and permeability of Chex-Arg20 was altered by multimerization.