{"title":"A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics","authors":"Arumugam Manikandan , Yu-Ze Chen , Chih-Chiang Shen , Chin-Wei Sher , Hao-Chung Kuo , Yu-Lun Chueh","doi":"10.1016/j.pquantelec.2019.100226","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Recent advances in the development of quantum dots (QDs) have offered new possibilities for the exploration of sensors, bio imaging, batteries, electrochemical water splitting and </span>optoelectronic applications because of their intriguing optical, electrical, catalytic and electrochemical properties. Among QDs, atomically thin two-dimensional quantum dots (2D QDs) derived from graphene sheets, </span>transition metal dichalcogenide<span><span> (TMD) layers and phosphorene have been of considerable interest for the past few years. There have been several intensive studies of carbon QDs, but TMD QDs and </span>heterostructures<span> based on 2D QDs are rapidly advancing. Herein, the synthesis and properties of 2D QDs, particularly carbon and TMD QDs, are reviewed for the recent progress in their application toward electrochemical water splitting, photocatalytic wastewater treatment, supercapacitors<span>, batteries and photodetectors. Moreover, the assembly of such 2D QDs to achieve industrial-scale production and boost their performance in widespread applications is emphasized.</span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"68 ","pages":"Article 100226"},"PeriodicalIF":7.4000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100226","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672719300321","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 65
Abstract
Recent advances in the development of quantum dots (QDs) have offered new possibilities for the exploration of sensors, bio imaging, batteries, electrochemical water splitting and optoelectronic applications because of their intriguing optical, electrical, catalytic and electrochemical properties. Among QDs, atomically thin two-dimensional quantum dots (2D QDs) derived from graphene sheets, transition metal dichalcogenide (TMD) layers and phosphorene have been of considerable interest for the past few years. There have been several intensive studies of carbon QDs, but TMD QDs and heterostructures based on 2D QDs are rapidly advancing. Herein, the synthesis and properties of 2D QDs, particularly carbon and TMD QDs, are reviewed for the recent progress in their application toward electrochemical water splitting, photocatalytic wastewater treatment, supercapacitors, batteries and photodetectors. Moreover, the assembly of such 2D QDs to achieve industrial-scale production and boost their performance in widespread applications is emphasized.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.