{"title":"1,2,3,5-Tetrazines: A General Synthesis, Cycloaddition Scope, and Fundamental Reactivity Patterns","authors":"Zhi-Chen Wu, and , Dale L. Boger*, ","doi":"10.1021/acs.joc.2c02687","DOIUrl":null,"url":null,"abstract":"<p >Despite the explosion of interest in heterocyclic azadienes, 1,2,3,5-tetrazines remain unexplored. Herein, the first general synthesis of this new class of heterocycles is disclosed. Its use in the preparation of a series of derivatives, and the first study of substituent effects on their cycloaddition reactivity, mode, and regioselectivity provide the foundation for future use. Their reactions with amidine, electron-rich, and strained dienophiles reveal unique fundamental reactivity patterns (4,6-dialkyl-1,2,3,5-tetrazines > 4,6-diaryl-1,2,3,5-tetrazines for amidines but slower with strained dienophiles), an exclusive C4/N1 mode of cycloaddition, and dominant alkyl versus aryl control on regioselectivity. An orthogonal reactivity of 1,2,3,5-tetrazines and the well-known isomeric 1,2,4,5-tetrazines is characterized, and detailed kinetic and mechanistic investigations of the remarkably fast reaction of 1,2,3,5-tetrazines with amidines, especially 4,6-dialkyl-1,2,3,5-tetrazines, established the mechanistic origins underlying the reactivity patterns and key features needed for future applications.</p>","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"87 24","pages":"16829–16846"},"PeriodicalIF":3.6000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.joc.2c02687","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.joc.2c02687","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the explosion of interest in heterocyclic azadienes, 1,2,3,5-tetrazines remain unexplored. Herein, the first general synthesis of this new class of heterocycles is disclosed. Its use in the preparation of a series of derivatives, and the first study of substituent effects on their cycloaddition reactivity, mode, and regioselectivity provide the foundation for future use. Their reactions with amidine, electron-rich, and strained dienophiles reveal unique fundamental reactivity patterns (4,6-dialkyl-1,2,3,5-tetrazines > 4,6-diaryl-1,2,3,5-tetrazines for amidines but slower with strained dienophiles), an exclusive C4/N1 mode of cycloaddition, and dominant alkyl versus aryl control on regioselectivity. An orthogonal reactivity of 1,2,3,5-tetrazines and the well-known isomeric 1,2,4,5-tetrazines is characterized, and detailed kinetic and mechanistic investigations of the remarkably fast reaction of 1,2,3,5-tetrazines with amidines, especially 4,6-dialkyl-1,2,3,5-tetrazines, established the mechanistic origins underlying the reactivity patterns and key features needed for future applications.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.