Leveraging learning experience design: digital media approaches to influence motivational traits that support student learning behaviors in undergraduate online courses.
{"title":"Leveraging learning experience design: digital media approaches to influence motivational traits that support student learning behaviors in undergraduate online courses.","authors":"Joseph T Wong, Bradley S Hughes","doi":"10.1007/s12528-022-09342-1","DOIUrl":null,"url":null,"abstract":"<p><p>Higher education may benefit from investigating alternative evidence-based methods of online learning to understand students' learning behaviors while considering students' social cognitive motivational traits. Researchers conducted an in situ design-based research (DBR) study to investigate learner experience design (LXD) methods, deploying approaches of asynchronous video, course dashboards, and enhanced user experience. This mixed-methods study (<i>N</i> = 181) assessed associations of students' social cognitive motivational traits (self-efficacy, task-value, self-regulation) influencing their learning behaviors (engagement, elaboration, critical thinking) resulting from LXD. Social cognitive motivational traits were positively predictive of learning behaviors. As motivational factors increased, students' course engagement, usage of elaboration, and critical thinking skills increased. Self-efficacy, task-value, and self-regulation explained 31% of the variance of engagement, 47% of the explained variance of critical thinking skills, and 57% of the explained variance in the usage of elaboration. As a predictor, task-value beliefs increased the proportion of explained variance in each model significantly, above self-efficacy and self-regulation. Qualitative content analysis corroborated these findings, explaining how LXD efforts contributed to motivations, learning behaviors, and learning experience. Results suggest that mechanisms underpinning LXD and students' learning behaviors are likely the result of dynamically catalyzing social cognitive motivational factors. The discussion concludes with the LXD affordances that explain the positive influences in students' social cognitive motivational traits and learning behaviors, while also considering constraints for future iterations.</p>","PeriodicalId":15404,"journal":{"name":"Journal of Computing in Higher Education","volume":" ","pages":"1-38"},"PeriodicalIF":4.5000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing in Higher Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s12528-022-09342-1","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Higher education may benefit from investigating alternative evidence-based methods of online learning to understand students' learning behaviors while considering students' social cognitive motivational traits. Researchers conducted an in situ design-based research (DBR) study to investigate learner experience design (LXD) methods, deploying approaches of asynchronous video, course dashboards, and enhanced user experience. This mixed-methods study (N = 181) assessed associations of students' social cognitive motivational traits (self-efficacy, task-value, self-regulation) influencing their learning behaviors (engagement, elaboration, critical thinking) resulting from LXD. Social cognitive motivational traits were positively predictive of learning behaviors. As motivational factors increased, students' course engagement, usage of elaboration, and critical thinking skills increased. Self-efficacy, task-value, and self-regulation explained 31% of the variance of engagement, 47% of the explained variance of critical thinking skills, and 57% of the explained variance in the usage of elaboration. As a predictor, task-value beliefs increased the proportion of explained variance in each model significantly, above self-efficacy and self-regulation. Qualitative content analysis corroborated these findings, explaining how LXD efforts contributed to motivations, learning behaviors, and learning experience. Results suggest that mechanisms underpinning LXD and students' learning behaviors are likely the result of dynamically catalyzing social cognitive motivational factors. The discussion concludes with the LXD affordances that explain the positive influences in students' social cognitive motivational traits and learning behaviors, while also considering constraints for future iterations.
期刊介绍:
Journal of Computing in Higher Education (JCHE) contributes to our understanding of the design, development, and implementation of instructional processes and technologies in higher education. JCHE publishes original research, literature reviews, implementation and evaluation studies, and theoretical, conceptual, and policy papers that provide perspectives on instructional technology’s role in improving access, affordability, and outcomes of postsecondary education. Priority is given to well-documented original papers that demonstrate a strong grounding in learning theory and/or rigorous educational research design.