{"title":"Pathological examination of Ym1, a chitinase family protein, in Mesocestoides corti-infected mice.","authors":"Junko Nio-Kobayashi, Makoto Owhashi, Toshihiko Iwanaga","doi":"10.2220/biomedres.43.161","DOIUrl":null,"url":null,"abstract":"<p><p>Mammals express a set of chitinase family proteins, comprising chitinases, which can hydrolyze chitin, and chitinase-like proteins without the chitinase activity but possessing chitin-binding properties. They act as endogenous lectins, regulating various physiological/pathological events. Ym1, originally identified as an eosinophil chemotactic factor or a macrophage-derived protein in parasite-infected mice, is a rodent-specific chitinase-like protein. Ym1 is also purified from eosinophilic crystals formed in the lung and urinary system in various disease models. We previously reported that major cellular sources of murine Ym1 are alveolar macrophages in the lung and neutrophils/monocytes lineage cells of the spleen and bone marrow under normal conditions. We here analyzed the detailed cellular expression of Ym1 in Mesocestoides corti (M. corti)-infected mice. Ym1 was significantly increased in the liver containing the larvae, lung, and peritoneal exudate cells in M. corti-infected mice, where activated macrophages expressed Ym1. Characteristic needle-shaped eosinophilic crystals appeared in the larvae-free lung, and Ym1 was localized to endoplasmic reticulum of activated alveolar macrophages. Moreover, swollen mesothelial cells covering the liver, spleen, and heart expressed Ym1 abundantly. Although the role of Ym1 in parasitic infection remains unclear, our findings focusing on an endogenous lectin may help in better understanding defense mechanism against parasites.</p>","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2220/biomedres.43.161","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mammals express a set of chitinase family proteins, comprising chitinases, which can hydrolyze chitin, and chitinase-like proteins without the chitinase activity but possessing chitin-binding properties. They act as endogenous lectins, regulating various physiological/pathological events. Ym1, originally identified as an eosinophil chemotactic factor or a macrophage-derived protein in parasite-infected mice, is a rodent-specific chitinase-like protein. Ym1 is also purified from eosinophilic crystals formed in the lung and urinary system in various disease models. We previously reported that major cellular sources of murine Ym1 are alveolar macrophages in the lung and neutrophils/monocytes lineage cells of the spleen and bone marrow under normal conditions. We here analyzed the detailed cellular expression of Ym1 in Mesocestoides corti (M. corti)-infected mice. Ym1 was significantly increased in the liver containing the larvae, lung, and peritoneal exudate cells in M. corti-infected mice, where activated macrophages expressed Ym1. Characteristic needle-shaped eosinophilic crystals appeared in the larvae-free lung, and Ym1 was localized to endoplasmic reticulum of activated alveolar macrophages. Moreover, swollen mesothelial cells covering the liver, spleen, and heart expressed Ym1 abundantly. Although the role of Ym1 in parasitic infection remains unclear, our findings focusing on an endogenous lectin may help in better understanding defense mechanism against parasites.
期刊介绍:
Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..