Transient B-cell depletion and regulatory T-cells mediation in combination with adenovirus mediated IGF-1 prevents and reverses autoimmune diabetes in NOD mice.
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Transient B-cell depletion and regulatory T-cells mediation in combination with adenovirus mediated IGF-1 prevents and reverses autoimmune diabetes in NOD mice.","authors":"Shujun Ye, Saimei Hua, Meiyang Zhou","doi":"10.1080/08916934.2022.2128782","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is one of the T cells mediated autoimmune diseases, although B cells also play an important role in the development. Both T cell and B cell targeted immunotherapies exhibited efficacies in preventing and reversing the T1D. Current study was performed to investigate the protective effects of anti-CD20/CD3 bi-specific antibody (bsAb) in combination with adenovirus mediated mouse insulin-like growth factor 1 (Adv-mIGF-1) gene on T1D in non-obese diabetes (NOD) mice. To simultaneously restore the proportion of Th cells and block the interaction of B cells as well as mediate T cell populations, the NOD model mice were randomly assigned to four groups received the saline, anti-CD20/CD3 bsAb and Adv-mIGF-1 gene alone or combination, respectively. After 16-consecutive weeks intervention, the ELISA, RT-PCR, western blot and histopathological analysis were performed to assess the pancreatic tissues and serum samples to evaluate the treatment effects. Chronic treatment of combination therapy improved T1D morbidity by improving the compartment and function of the CD4<sup>+</sup>Foxp3<sup>+</sup> Tregs, reversing the secretion of insulin, controlling the blood glucose levels (BGLs) and alleviating insulitis as well as cell apoptosis in the NOD model mice. Moreover, current combination therapy also accelerated the proliferation and differentiation of pancreatic β cells <i>via</i> suppressing the apoptosis-related factors, including caspase-3, caspase-8 and Fas, and activating the Bcl-2-related anti-apoptotic pathway. Furthermore, the cytokeratin-19 (CK-19) and pancreatic duodenal homoplasmic box-1 (PDX-1), as two important stem cell markers of pancreas were both significantly improved by treatment of combination therapy. On conclusions, chronic treatment of anti-CD20/CD3 bsAb in combination with Adv-mIGF-1 gene exerts synergistic protection on T1D in the NOD mice.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2022.2128782","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Type 1 diabetes (T1D) is one of the T cells mediated autoimmune diseases, although B cells also play an important role in the development. Both T cell and B cell targeted immunotherapies exhibited efficacies in preventing and reversing the T1D. Current study was performed to investigate the protective effects of anti-CD20/CD3 bi-specific antibody (bsAb) in combination with adenovirus mediated mouse insulin-like growth factor 1 (Adv-mIGF-1) gene on T1D in non-obese diabetes (NOD) mice. To simultaneously restore the proportion of Th cells and block the interaction of B cells as well as mediate T cell populations, the NOD model mice were randomly assigned to four groups received the saline, anti-CD20/CD3 bsAb and Adv-mIGF-1 gene alone or combination, respectively. After 16-consecutive weeks intervention, the ELISA, RT-PCR, western blot and histopathological analysis were performed to assess the pancreatic tissues and serum samples to evaluate the treatment effects. Chronic treatment of combination therapy improved T1D morbidity by improving the compartment and function of the CD4+Foxp3+ Tregs, reversing the secretion of insulin, controlling the blood glucose levels (BGLs) and alleviating insulitis as well as cell apoptosis in the NOD model mice. Moreover, current combination therapy also accelerated the proliferation and differentiation of pancreatic β cells via suppressing the apoptosis-related factors, including caspase-3, caspase-8 and Fas, and activating the Bcl-2-related anti-apoptotic pathway. Furthermore, the cytokeratin-19 (CK-19) and pancreatic duodenal homoplasmic box-1 (PDX-1), as two important stem cell markers of pancreas were both significantly improved by treatment of combination therapy. On conclusions, chronic treatment of anti-CD20/CD3 bsAb in combination with Adv-mIGF-1 gene exerts synergistic protection on T1D in the NOD mice.