Upregulation of claudin‑4 by Chinese traditional medicine Shenfu attenuates lung tissue damage by acute lung injury aggravated by acute gastrointestinal injury.
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Upregulation of claudin‑4 by Chinese traditional medicine Shenfu attenuates lung tissue damage by acute lung injury aggravated by acute gastrointestinal injury.","authors":"Yueliang Zheng, Mian Zheng, Jing Shao, Chengxing Jiang, Jian Shen, Rujia Tao, Yuqin Deng, Yingge Xu, Yuanqiang Lu","doi":"10.1080/13880209.2022.2128824","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Many studies have explored new methods to cure acute lung injury (ALI); however, none of those methods could significantly change the high mortality rate of ALI. Shenfu is a Chinese traditional medicine that might be effective against ALI.</p><p><strong>Objective: </strong>Our study explores the therapeutic potential of Shenfu in ALI.</p><p><strong>Materials and methods: </strong>Male C57BL/6 mice were assigned to control, lipopolysaccharide (LPS) (500 µg/100 μL per mouse), and LPS + Shenfu (30 mL/kg) groups. Shenfu (10 µL/mL) was added to LPS (10 µg/mL) treated MLE-12 cells for 48 h <i>in vitro</i>. Male C57BL/6 mice were divided into four groups: LPS, LPS + 3% dextran sulphate sodium (DSS), 3% DSS + Shenfu, and LPS + 3% DSS + Shenfu.</p><p><strong>Results: </strong>Compared with the ALI group, Shenfu reduced wet/dry weight ratio (19.8%, 36.2%), and reduced the IL-2 (40.9%, 61.6%), IFN-γ (43.5%, 53.3%) TNF-α (54.1%, 42.1%), IL-6 (54.8%,70%), and IL-1β (39.9%, 65.1%), reduced serum uric acid (18.8%, 48.7%) and creatinine (17.4%, 41.1%). Moreover, Shenfu enhanced cell viability (17.2%, 59.9%) and inhibited cell apoptosis (63.0%) and p38/ERK phosphorylation in <i>in vitro</i> cultured epithelial cells with LPS stimulation. Mechanistically, Shenfu mediated the protective effect by upregulating claudin-4 expression. In addition, Shenfu could protect against both lung and intestinal epithelial damage in acute gastrointestinal injury-exacerbated ALI.</p><p><strong>Discussion and conclusions: </strong>Taken together, the results revealed the therapeutic effect and the underlying mechanism of Shenfu injection in an ALI in mouse model, indicating its clinical potential to treat patients with ALI.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578493/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2022.2128824","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Context: Many studies have explored new methods to cure acute lung injury (ALI); however, none of those methods could significantly change the high mortality rate of ALI. Shenfu is a Chinese traditional medicine that might be effective against ALI.
Objective: Our study explores the therapeutic potential of Shenfu in ALI.
Materials and methods: Male C57BL/6 mice were assigned to control, lipopolysaccharide (LPS) (500 µg/100 μL per mouse), and LPS + Shenfu (30 mL/kg) groups. Shenfu (10 µL/mL) was added to LPS (10 µg/mL) treated MLE-12 cells for 48 h in vitro. Male C57BL/6 mice were divided into four groups: LPS, LPS + 3% dextran sulphate sodium (DSS), 3% DSS + Shenfu, and LPS + 3% DSS + Shenfu.
Results: Compared with the ALI group, Shenfu reduced wet/dry weight ratio (19.8%, 36.2%), and reduced the IL-2 (40.9%, 61.6%), IFN-γ (43.5%, 53.3%) TNF-α (54.1%, 42.1%), IL-6 (54.8%,70%), and IL-1β (39.9%, 65.1%), reduced serum uric acid (18.8%, 48.7%) and creatinine (17.4%, 41.1%). Moreover, Shenfu enhanced cell viability (17.2%, 59.9%) and inhibited cell apoptosis (63.0%) and p38/ERK phosphorylation in in vitro cultured epithelial cells with LPS stimulation. Mechanistically, Shenfu mediated the protective effect by upregulating claudin-4 expression. In addition, Shenfu could protect against both lung and intestinal epithelial damage in acute gastrointestinal injury-exacerbated ALI.
Discussion and conclusions: Taken together, the results revealed the therapeutic effect and the underlying mechanism of Shenfu injection in an ALI in mouse model, indicating its clinical potential to treat patients with ALI.