Marie Lund Ohlsson, Jonas Danvind, L Joakim Holmberg
{"title":"Estimation of muscular metabolic power in two different cross-country sit-skiing sledges using inverse-dynamics simulation.","authors":"Marie Lund Ohlsson, Jonas Danvind, L Joakim Holmberg","doi":"10.1177/20556683221131557","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to estimate and compare the muscular metabolic power produced in the human body using musculoskeletal inverse-dynamics during cross-country sit-skiing. Two sitting positions were adapted for athletes with reduced trunk and hip muscle control, knee low with frontal trunk support (KL-fix), and knee high (KH). Five female national class able-bodied cross-country skiers performed submaximal and maximal exercise in both sitting positions, while recording 3-D kinematics, pole forces, electromyography and respiratory variables. Simulations were performed from these experimental results and muscular metabolic power was computed. The main part of the muscle metabolic power was produced in the upper limbs for both sitting positions, but KH produced more muscle metabolic power in lower limbs and trunk during maximal intensity. KH was also more efficient, utilizing less muscular metabolic power during submaximal intensities, relatively less power in the upper limbs and more power in the trunk, hip and lower limb muscles. This implies that sitting position KH is preferable for high power output when using able-bodied simulation models. This study showed the potential of using musculoskeletal simulations to improve the understanding of how different equipment design and muscles contribute to performance.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"20556683221131557"},"PeriodicalIF":4.6000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549202/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20556683221131557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this study was to estimate and compare the muscular metabolic power produced in the human body using musculoskeletal inverse-dynamics during cross-country sit-skiing. Two sitting positions were adapted for athletes with reduced trunk and hip muscle control, knee low with frontal trunk support (KL-fix), and knee high (KH). Five female national class able-bodied cross-country skiers performed submaximal and maximal exercise in both sitting positions, while recording 3-D kinematics, pole forces, electromyography and respiratory variables. Simulations were performed from these experimental results and muscular metabolic power was computed. The main part of the muscle metabolic power was produced in the upper limbs for both sitting positions, but KH produced more muscle metabolic power in lower limbs and trunk during maximal intensity. KH was also more efficient, utilizing less muscular metabolic power during submaximal intensities, relatively less power in the upper limbs and more power in the trunk, hip and lower limb muscles. This implies that sitting position KH is preferable for high power output when using able-bodied simulation models. This study showed the potential of using musculoskeletal simulations to improve the understanding of how different equipment design and muscles contribute to performance.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.