Jörg Matysik , Chen Song , Pavlo Bielytskyi , A. Alia
{"title":"Teaching product operators using the Vega diagram","authors":"Jörg Matysik , Chen Song , Pavlo Bielytskyi , A. Alia","doi":"10.1016/j.ssnmr.2022.101830","DOIUrl":null,"url":null,"abstract":"<div><p>We all will remember Shimon Vega (1942–2021) as wonderful human and scientist. Paramount examples of his scientific work are quoted in this special issue dedicated to his memory. This article is dedicated to remember Shimon Vega as a fantastic teacher. To introduce to the world of <em>product operators</em>, Shimon created a simple scheme that we now call the <em>Vega diagram</em>. It allows for fast analysis of pulse sequences for AX spin systems. Here, we want to document this scheme for future generations.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101830"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000595","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We all will remember Shimon Vega (1942–2021) as wonderful human and scientist. Paramount examples of his scientific work are quoted in this special issue dedicated to his memory. This article is dedicated to remember Shimon Vega as a fantastic teacher. To introduce to the world of product operators, Shimon created a simple scheme that we now call the Vega diagram. It allows for fast analysis of pulse sequences for AX spin systems. Here, we want to document this scheme for future generations.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.