Within-Generation and Transgenerational Plasticity of a Temperate Salmonid in Response to Thermal Acclimation and Acute Temperature Stress.

IF 1.8 3区 生物学 Q3 PHYSIOLOGY
Chantelle M Penney, Joshua K R Tabh, Chris C Wilson, Gary Burness
{"title":"Within-Generation and Transgenerational Plasticity of a Temperate Salmonid in Response to Thermal Acclimation and Acute Temperature Stress.","authors":"Chantelle M Penney,&nbsp;Joshua K R Tabh,&nbsp;Chris C Wilson,&nbsp;Gary Burness","doi":"10.1086/721478","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe rise in temperature associated with climate change may threaten the persistence of stenothermal organisms with limited capacities for beneficial thermal acclimation. We investigated the capacity for within-generation and transgenerational thermal responses in brook trout (<i>Salvelinus fontinalis</i>), a cold-adapted salmonid. Adult fish were acclimated to temperatures within (10°C) and above (21°C) their thermal optimum for 6 mo before spawning, then mated in a full factorial breeding design to produce offspring from cold- and warm-acclimated parents and bidirectional crosses between parents from both temperature treatments. Offspring from families were subdivided and reared at two acclimation temperatures representing their current (15°C) and anticipated future (19°C) habitat temperatures. Offspring thermal physiology was measured as the rate of oxygen consumption (Mo<sub>2</sub>) during an acute change in temperature (increase of 2°C h<sup>-1</sup>) to observe their Mo<sub>2</sub>-temperature relationship. We recorded resting Mo<sub>2</sub>, peak (highest achieved, thermally induced) Mo<sub>2</sub>, and critical thermal maximum (CTM) as performance metrics. Although limited, within-generation plasticity was greater than transgenerational plasticity, with offspring warm acclimation elevating CTM by 0.5°C but slightly lowering peak thermally induced Mo<sub>2</sub>. Transgenerational plasticity was evident as a slightly elevated resting Mo<sub>2</sub> and a shift of the Mo<sub>2</sub>-temperature relationship to higher rates overall in offspring from warm-acclimated parents. Furthermore, offspring whose parents were warm acclimated were in worse condition than those whose parents were cold acclimated. Both parents contributed to offspring thermal responses; however, the paternal effect was stronger. Despite the existence of within-generation and transgenerational plasticity in brook trout, it is unlikely that these will be sufficient for coping with long-term changes to environmental temperatures.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"95 6","pages":"484-499"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/721478","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

AbstractThe rise in temperature associated with climate change may threaten the persistence of stenothermal organisms with limited capacities for beneficial thermal acclimation. We investigated the capacity for within-generation and transgenerational thermal responses in brook trout (Salvelinus fontinalis), a cold-adapted salmonid. Adult fish were acclimated to temperatures within (10°C) and above (21°C) their thermal optimum for 6 mo before spawning, then mated in a full factorial breeding design to produce offspring from cold- and warm-acclimated parents and bidirectional crosses between parents from both temperature treatments. Offspring from families were subdivided and reared at two acclimation temperatures representing their current (15°C) and anticipated future (19°C) habitat temperatures. Offspring thermal physiology was measured as the rate of oxygen consumption (Mo2) during an acute change in temperature (increase of 2°C h-1) to observe their Mo2-temperature relationship. We recorded resting Mo2, peak (highest achieved, thermally induced) Mo2, and critical thermal maximum (CTM) as performance metrics. Although limited, within-generation plasticity was greater than transgenerational plasticity, with offspring warm acclimation elevating CTM by 0.5°C but slightly lowering peak thermally induced Mo2. Transgenerational plasticity was evident as a slightly elevated resting Mo2 and a shift of the Mo2-temperature relationship to higher rates overall in offspring from warm-acclimated parents. Furthermore, offspring whose parents were warm acclimated were in worse condition than those whose parents were cold acclimated. Both parents contributed to offspring thermal responses; however, the paternal effect was stronger. Despite the existence of within-generation and transgenerational plasticity in brook trout, it is unlikely that these will be sufficient for coping with long-term changes to environmental temperatures.

温带鲑科鱼对热驯化和急性温度胁迫的代内和跨代可塑性。
摘要与气候变化相关的温度升高可能威胁到具有有限热适应能力的低温生物的持续生存。我们研究了布鲁克鳟鱼(Salvelinus fontinalis)的代内和跨代热反应能力,这是一种适应冷的鲑鱼。成鱼在产卵前6个月适应温度在(10°C)和(21°C)以上的最佳温度,然后在全因子育种设计中交配,从冷驯化和热驯化的亲本中产生后代,并在两种温度处理的亲本之间进行双向杂交。对来自家庭的后代进行细分,并在代表其当前(15°C)和预期未来(19°C)栖息地温度的两种驯化温度下饲养。后代热生理测量为急性温度变化(升高2°C h-1)时的耗氧量(Mo2),观察它们的Mo2-温度关系。我们记录了静息Mo2、峰值(热诱导的最高)Mo2和临界热最大值(CTM)作为性能指标。尽管有限,但代内可塑性大于跨代可塑性,后代热驯化使CTM升高0.5°C,但略微降低热诱导Mo2峰值。跨代可塑性是明显的,因为在温暖环境的父母的后代中,静止Mo2的轻微升高和Mo2-温度关系的转变总体上更高。此外,父母温驯化的后代比父母冷驯化的后代更差。父母双方都对后代的热反应有贡献;然而,父亲的影响更强。尽管布鲁克鳟鱼存在代内和跨代可塑性,但这些不太可能足以应对环境温度的长期变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
6.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context. Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信