{"title":"Inductive biases in theory-based reinforcement learning","authors":"Thomas Pouncy , Samuel J. Gershman","doi":"10.1016/j.cogpsych.2022.101509","DOIUrl":null,"url":null,"abstract":"<div><p><span>Understanding the inductive biases that allow humans to learn in complex environments has been an important goal of cognitive science. Yet, while we have discovered much about human biases in specific learning domains, much of this research has focused on simple tasks that lack the complexity of the real world. In contrast, video games involving agents and objects embedded in richly structured systems provide an experimentally tractable proxy for real-world complexity. Recent work has suggested that key aspects of human learning in domains like video games can be captured by model-based reinforcement learning (RL) with object-oriented relational models—what we term </span><em>theory-based RL</em>. Restricting the model class in this way provides an inductive bias that dramatically increases learning efficiency, but in this paper we show that humans employ a stronger set of biases in addition to syntactic constraints on the structure of theories. In particular, we catalog a set of semantic biases that constrain the content of theories. Building these semantic biases into a theory-based RL system produces more human-like learning in video game environments.</p></div>","PeriodicalId":50669,"journal":{"name":"Cognitive Psychology","volume":"138 ","pages":"Article 101509"},"PeriodicalIF":3.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010028522000457","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Understanding the inductive biases that allow humans to learn in complex environments has been an important goal of cognitive science. Yet, while we have discovered much about human biases in specific learning domains, much of this research has focused on simple tasks that lack the complexity of the real world. In contrast, video games involving agents and objects embedded in richly structured systems provide an experimentally tractable proxy for real-world complexity. Recent work has suggested that key aspects of human learning in domains like video games can be captured by model-based reinforcement learning (RL) with object-oriented relational models—what we term theory-based RL. Restricting the model class in this way provides an inductive bias that dramatically increases learning efficiency, but in this paper we show that humans employ a stronger set of biases in addition to syntactic constraints on the structure of theories. In particular, we catalog a set of semantic biases that constrain the content of theories. Building these semantic biases into a theory-based RL system produces more human-like learning in video game environments.
期刊介绍:
Cognitive Psychology is concerned with advances in the study of attention, memory, language processing, perception, problem solving, and thinking. Cognitive Psychology specializes in extensive articles that have a major impact on cognitive theory and provide new theoretical advances.
Research Areas include:
• Artificial intelligence
• Developmental psychology
• Linguistics
• Neurophysiology
• Social psychology.