Charini Maladeniya, Taniya Darshani, Sameera R Samarakoon, Frank R Fronczek, W M C Sameera, Inoka C Perera, Theshini Perera
{"title":"Biological Evaluation of Platinum(II) Sulfonamido Complexes: Synthesis, Characterization, Cytotoxicity, and Biological Imaging.","authors":"Charini Maladeniya, Taniya Darshani, Sameera R Samarakoon, Frank R Fronczek, W M C Sameera, Inoka C Perera, Theshini Perera","doi":"10.1155/2022/7821284","DOIUrl":null,"url":null,"abstract":"Platinum-based compounds are actively used in clinical trials as anticancer agents. In this study, two novel platinum complexes, (C1 = [PtCl2(N(SO2quin)dpa)], C2 = [PtCl2(N(SO2azobenz)dpa)]) containing quinoline and azobenzene appended dipicolylamine sulfonamide ligands were synthesized in good yield. The singlet attributable to methylene CH2 protons of the ligands of C1 and C2 appears as two doublets in 1H NMR spectra, which confirms the presence of magnetically nonequivalent protons upon coordination to platinum. Structural data of N(SO2quin)dpa (L1), N(SO2azobenz)dpa (L2) and PtCl2(N(SO2quin)dpa) confirmed the formation of the desired compounds. Time-dependent density functional theory calculations suggested that the excitation of L1 show quin-unit-based π⟶π∗ excitations (i.e., ligand-centered charge transfer, LC), while C1 shows the metal-ligand-to-ligand charge-transfer (MLLCT) character. L1 displays intense fluorescence from the 1LC excited state, while C1 gives phosphorescence from the 3LC state. Mammalian cell toxicity of ligands and complexes was assessed with NCI–H292 nonsmall-cell lung cancer cells. Further, C1 and C2 showed significantly low IC50 values compared with N(SO2azobenz)dpa and PtCl2(N(SO2quin)dpa). Fluorescence imaging data of both ligands and complexes revealed the potential fluorescence activity of these compounds for biological imaging. All four compounds are promising novel candidates that can be further investigated on their usage as potential anticancer agents and cancer cell imaging agents.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":" ","pages":"7821284"},"PeriodicalIF":5.4000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489406/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/7821284","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Platinum-based compounds are actively used in clinical trials as anticancer agents. In this study, two novel platinum complexes, (C1 = [PtCl2(N(SO2quin)dpa)], C2 = [PtCl2(N(SO2azobenz)dpa)]) containing quinoline and azobenzene appended dipicolylamine sulfonamide ligands were synthesized in good yield. The singlet attributable to methylene CH2 protons of the ligands of C1 and C2 appears as two doublets in 1H NMR spectra, which confirms the presence of magnetically nonequivalent protons upon coordination to platinum. Structural data of N(SO2quin)dpa (L1), N(SO2azobenz)dpa (L2) and PtCl2(N(SO2quin)dpa) confirmed the formation of the desired compounds. Time-dependent density functional theory calculations suggested that the excitation of L1 show quin-unit-based π⟶π∗ excitations (i.e., ligand-centered charge transfer, LC), while C1 shows the metal-ligand-to-ligand charge-transfer (MLLCT) character. L1 displays intense fluorescence from the 1LC excited state, while C1 gives phosphorescence from the 3LC state. Mammalian cell toxicity of ligands and complexes was assessed with NCI–H292 nonsmall-cell lung cancer cells. Further, C1 and C2 showed significantly low IC50 values compared with N(SO2azobenz)dpa and PtCl2(N(SO2quin)dpa). Fluorescence imaging data of both ligands and complexes revealed the potential fluorescence activity of these compounds for biological imaging. All four compounds are promising novel candidates that can be further investigated on their usage as potential anticancer agents and cancer cell imaging agents.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.