Sodium doping and 3D honeycomb nanoarchitecture: Key features of covalent triazine-based frameworks (CTF) organocatalyst for enhanced solar-driven advanced oxidation processes

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL
Tao Zeng , Shuqi Li , Yi Shen , Haiyan Zhang , Hongru Feng , Xiaole Zhang , Lingxiangyu Li , Zongwei Cai , Shuang Song
{"title":"Sodium doping and 3D honeycomb nanoarchitecture: Key features of covalent triazine-based frameworks (CTF) organocatalyst for enhanced solar-driven advanced oxidation processes","authors":"Tao Zeng ,&nbsp;Shuqi Li ,&nbsp;Yi Shen ,&nbsp;Haiyan Zhang ,&nbsp;Hongru Feng ,&nbsp;Xiaole Zhang ,&nbsp;Lingxiangyu Li ,&nbsp;Zongwei Cai ,&nbsp;Shuang Song","doi":"10.1016/j.apcatb.2019.117915","DOIUrl":null,"url":null,"abstract":"<div><p><span>Herein, we designed a novel sodium-doped covalent triazine-based framework with a 3D honeycomb nanoarchitecture (H-CTF-Na) as visible-light-responsive organocatalyst to efficiently drive advanced oxidation processes (AOPs). Experimental and theoretical findings reveal that Na doping narrows the band gap by elevating the band edges and the 3D hierarchical nanocellular morphology improves light harvesting and electron transfer. With these merits, H-CTF-Na showed a photoactivity enhancement of 4.9–6.0-fold for the degradation of carbamazepine (CBZ) compared to those of pristine CTFs and g-C</span><sub>3</sub>N<sub>4</sub> through peroxymonosulfate (PMS) activation under visible-light irradiation. The quenching and EPR results indicate that a synergistic effect between photooxidation (<em>h<sup>+</sup></em>) and PMS activation (<sup>•</sup>OH and SO<sub>4</sub><sup>•−</sup>) derived from the vigorous capture of photogenerated e<sup>−</sup><span> by PMS is responsible for the marked efficacy of H-CTF-Na/vis/PMS system. Moreover, this system exhibited excellent versatility in degrading other organics (such as various phenols and dyes) and good reusability in terms of five high-efficiency recycled uses.</span></p></div>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.apcatb.2019.117915","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337319306617","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 34

Abstract

Herein, we designed a novel sodium-doped covalent triazine-based framework with a 3D honeycomb nanoarchitecture (H-CTF-Na) as visible-light-responsive organocatalyst to efficiently drive advanced oxidation processes (AOPs). Experimental and theoretical findings reveal that Na doping narrows the band gap by elevating the band edges and the 3D hierarchical nanocellular morphology improves light harvesting and electron transfer. With these merits, H-CTF-Na showed a photoactivity enhancement of 4.9–6.0-fold for the degradation of carbamazepine (CBZ) compared to those of pristine CTFs and g-C3N4 through peroxymonosulfate (PMS) activation under visible-light irradiation. The quenching and EPR results indicate that a synergistic effect between photooxidation (h+) and PMS activation (OH and SO4•−) derived from the vigorous capture of photogenerated e by PMS is responsible for the marked efficacy of H-CTF-Na/vis/PMS system. Moreover, this system exhibited excellent versatility in degrading other organics (such as various phenols and dyes) and good reusability in terms of five high-efficiency recycled uses.

Abstract Image

钠掺杂和三维蜂窝纳米结构:共价三嗪基框架(CTF)有机催化剂的关键特征,用于增强太阳能驱动的高级氧化过程
在此,我们设计了一种新型的钠掺杂共价三嗪基框架,其3D蜂窝纳米结构(H-CTF-Na)作为可见光响应的有机催化剂,有效地驱动高级氧化过程(AOPs)。实验和理论结果表明,Na掺杂通过提升带边来缩小带隙,并且三维分层纳米细胞形态改善了光捕获和电子转移。基于这些优点,H-CTF-Na在可见光照射下通过过氧单硫酸盐(PMS)活化降解卡马西平(CBZ)的光活性比原始ctf和g-C3N4增强4.9 - 6.0倍。猝灭和EPR结果表明,PMS强烈捕获光生成的e -所产生的光氧化(h+)和PMS活化(•OH和SO4•−)之间的协同效应是h - ctf - na /vis/PMS体系显着功效的原因。此外,该体系在降解其他有机物(如各种酚类和染料)方面表现出优异的通用性,并且在五种高效循环利用方面具有良好的可重复使用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信