Long non-coding RNA IGFBP7-AS1 accelerates the odontogenic differentiation of stem cells from human exfoliated deciduous teeth by regulating IGFBP7 expression.
Dan Wang, Ningxin Zhu, Fei Xie, Man Qin, Yuanyuan Wang
{"title":"Long non-coding RNA IGFBP7-AS1 accelerates the odontogenic differentiation of stem cells from human exfoliated deciduous teeth by regulating IGFBP7 expression.","authors":"Dan Wang, Ningxin Zhu, Fei Xie, Man Qin, Yuanyuan Wang","doi":"10.1007/s13577-022-00763-9","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. We identified the effect of the long noncoding RNA insulin-like growth factor-binding protein 7 antisense RNA 1 (lncRNA IGFBP7-AS1) in vivo and its underlying mechanism during SHED odontogenic differentiation. IGFBP7-AS1 and insulin-like growth factor-binding protein 7 (IGFBP7) were overexpressed using lentiviruses. IGFBP7 expression was knocked down with small interfering RNA. The effect of IGFBP7-AS1 in vivo was confirmed by animal experiments. The effect of IGFBP7 on SHED odontogenic differentiation was assessed with alkaline phosphatase staining, alizarin red S staining, quantitative reverse transcription-PCR, and western blotting. The relationship between IGFBP7-AS1 and IGFBP7 was confirmed by quantitative reverse transcription-PCR and western blotting. IGFBP7-AS1 promoted SHED odontogenesis in vivo, and regulated the expression of the coding gene IGFBP7 positively. Inhibiting IGFBP7 led to suppress SHED odontogenic differentiation while IGFBP7 overexpression had the opposite effect. IGFBP7-AS1 enhanced the stability of IGFBP7. IGFBP7-AS1 promoted SHED odontogenic differentiation in vivo. The underlying mechanism may involve the enhancement of IGFBP7 stability. This may provide novel potential targets for dental tissue engineering.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":" ","pages":"1697-1707"},"PeriodicalIF":4.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515061/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00763-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. We identified the effect of the long noncoding RNA insulin-like growth factor-binding protein 7 antisense RNA 1 (lncRNA IGFBP7-AS1) in vivo and its underlying mechanism during SHED odontogenic differentiation. IGFBP7-AS1 and insulin-like growth factor-binding protein 7 (IGFBP7) were overexpressed using lentiviruses. IGFBP7 expression was knocked down with small interfering RNA. The effect of IGFBP7-AS1 in vivo was confirmed by animal experiments. The effect of IGFBP7 on SHED odontogenic differentiation was assessed with alkaline phosphatase staining, alizarin red S staining, quantitative reverse transcription-PCR, and western blotting. The relationship between IGFBP7-AS1 and IGFBP7 was confirmed by quantitative reverse transcription-PCR and western blotting. IGFBP7-AS1 promoted SHED odontogenesis in vivo, and regulated the expression of the coding gene IGFBP7 positively. Inhibiting IGFBP7 led to suppress SHED odontogenic differentiation while IGFBP7 overexpression had the opposite effect. IGFBP7-AS1 enhanced the stability of IGFBP7. IGFBP7-AS1 promoted SHED odontogenic differentiation in vivo. The underlying mechanism may involve the enhancement of IGFBP7 stability. This may provide novel potential targets for dental tissue engineering.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.