The Ogden and the extended tube model as backbone in describing electroactive polymers: advancements in modelling nonlinear behaviour and fracture.

M Kaliske, J Storm, A Kanan, W Klausler
{"title":"The Ogden and the extended tube model as backbone in describing electroactive polymers: advancements in modelling nonlinear behaviour and fracture.","authors":"M Kaliske,&nbsp;J Storm,&nbsp;A Kanan,&nbsp;W Klausler","doi":"10.1098/rsta.2021.0329","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperelastic constitutive relations form the basis of advanced models for novel materials. Such elastic deformation potentials are the backbone for complex material formulations at elastic and inelastic deformations, especially when embedded into powerful frameworks like generalized standard materials, as well as multiphysical and multiscale formulations. With the focus on electroactive polymers, the article at hand demonstrates the derivation of a variational, rate-dependent electromechanical model for quasi-incompressible polymers and the derivation of an electromechanical model for regularized fracture mechanics by means of the phase-field method. Starting at the prominent Ogden and the extended tube model, some developments from the last decades are revisited and presented via the principle of virtual power, for instance, the established mixed element formulation, nonlinear viscoelasticity and electromechanical coupling. An electromechanically fully coupled representative crack element is used to derive a novel phase-field model for fracture. A key property of the proposed model is the ability to describe the electrical free-space behaviour inside the crack gap, which is demonstrated by adopting three common crack-face conditions. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210329"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hyperelastic constitutive relations form the basis of advanced models for novel materials. Such elastic deformation potentials are the backbone for complex material formulations at elastic and inelastic deformations, especially when embedded into powerful frameworks like generalized standard materials, as well as multiphysical and multiscale formulations. With the focus on electroactive polymers, the article at hand demonstrates the derivation of a variational, rate-dependent electromechanical model for quasi-incompressible polymers and the derivation of an electromechanical model for regularized fracture mechanics by means of the phase-field method. Starting at the prominent Ogden and the extended tube model, some developments from the last decades are revisited and presented via the principle of virtual power, for instance, the established mixed element formulation, nonlinear viscoelasticity and electromechanical coupling. An electromechanically fully coupled representative crack element is used to derive a novel phase-field model for fracture. A key property of the proposed model is the ability to describe the electrical free-space behaviour inside the crack gap, which is demonstrated by adopting three common crack-face conditions. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.

奥格登和扩展管模型作为描述电活性聚合物的主干:非线性行为和断裂建模的进展。
超弹性本构关系是新材料先进模型的基础。这种弹性变形势是弹性和非弹性变形复杂材料公式的骨干,特别是当嵌入到强大的框架中,如广义标准材料,以及多物理和多尺度公式。本文以电活性聚合物为重点,推导了准不可压缩聚合物的变分、速率相关的机电模型,并利用相场法推导了正则断裂力学的机电模型。从著名的奥格登模型和扩展管模型开始,通过虚拟功率原理重新回顾和介绍了过去几十年的一些发展,例如,建立的混合单元公式,非线性粘弹性和机电耦合。采用机电完全耦合的代表性裂纹单元,推导了一种新的断裂相场模型。该模型的一个关键特性是能够描述裂纹间隙内的电自由空间行为,并通过采用三种常见的裂纹面条件来证明这一点。本文是专题“橡胶力学的奥格登模型:五十年来对非线性弹性的影响”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信