Ogden material calibration via magnetic resonance cartography, parameter sensitivity and variational system identification.

Denislav P Nikolov, Siddhartha Srivastava, Bachir A Abeid, Ulrich M Scheven, Ellen M Arruda, Krishna Garikipati, Jonathan B Estrada
{"title":"Ogden material calibration via magnetic resonance cartography, parameter sensitivity and variational system identification.","authors":"Denislav P Nikolov,&nbsp;Siddhartha Srivastava,&nbsp;Bachir A Abeid,&nbsp;Ulrich M Scheven,&nbsp;Ellen M Arruda,&nbsp;Krishna Garikipati,&nbsp;Jonathan B Estrada","doi":"10.1098/rsta.2021.0324","DOIUrl":null,"url":null,"abstract":"<p><p>Contemporary material characterization techniques that leverage deformation fields and the weak form of the equilibrium equations face challenges in the numerical solution procedure of the inverse characterization problem. As material models and descriptions differ, so too must the approaches for identifying parameters and their corresponding mechanisms. The widely used Ogden material model can be comprised of a chosen number of terms of the same mathematical form, which presents challenges of parsimonious representation, interpretability and stability. Robust techniques for system identification of any material model are important to assess and improve experimental design, in addition to their centrality to forward computations. Using fully three-dimensional displacement fields acquired in silicone elastomers with our recently developed magnetic resonance cartography (MR-<i><b>u</b></i>) technique on the order of greater than [Formula: see text], we leverage partial differential equation-constrained optimization as the basis of variational system identification of our material parameters. We incorporate the statistical <i>F</i>-test to maintain parsimony of representation. Using a new, local deformation decomposition locally into mixtures of biaxial and uniaxial tensile states, we evaluate experiments based on an analytical sensitivity metric and discuss the implications for experimental design. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210324"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Contemporary material characterization techniques that leverage deformation fields and the weak form of the equilibrium equations face challenges in the numerical solution procedure of the inverse characterization problem. As material models and descriptions differ, so too must the approaches for identifying parameters and their corresponding mechanisms. The widely used Ogden material model can be comprised of a chosen number of terms of the same mathematical form, which presents challenges of parsimonious representation, interpretability and stability. Robust techniques for system identification of any material model are important to assess and improve experimental design, in addition to their centrality to forward computations. Using fully three-dimensional displacement fields acquired in silicone elastomers with our recently developed magnetic resonance cartography (MR-u) technique on the order of greater than [Formula: see text], we leverage partial differential equation-constrained optimization as the basis of variational system identification of our material parameters. We incorporate the statistical F-test to maintain parsimony of representation. Using a new, local deformation decomposition locally into mixtures of biaxial and uniaxial tensile states, we evaluate experiments based on an analytical sensitivity metric and discuss the implications for experimental design. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.

奥格登材料校准通过磁共振制图,参数灵敏度和变分系统识别。
利用变形场和弱形式平衡方程的当代材料表征技术在反表征问题的数值求解过程中面临挑战。由于材料模型和描述的不同,确定参数及其相应机制的方法也必须不同。广泛使用的奥格登材料模型可以由相同数学形式的选定数量的术语组成,这提出了简洁表示,可解释性和稳定性的挑战。除了对正演计算具有中心意义外,任何材料模型系统识别的稳健技术对评估和改进实验设计都很重要。利用我们最近开发的磁共振制图(MR-u)技术在硅胶弹性体中获得的全三维位移场,其量级大于[公式:见文本],我们利用偏微分方程约束优化作为材料参数变分系统识别的基础。我们采用统计f检验来保持代表性的简约性。采用一种新的局部变形分解方法,局部分解为双轴和单轴拉伸状态的混合物,我们基于分析灵敏度度量来评估实验,并讨论了实验设计的意义。本文是专题“橡胶力学的奥格登模型:五十年来对非线性弹性的影响”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信