{"title":"Flexible Aluminum-Air Battery Based on Ionic Liquid-Gel Polymer Electrolyte","authors":"Ziyi Shui, Yuzhi Chen, Wei Zhao* and Xi Chen*, ","doi":"10.1021/acs.langmuir.2c01178","DOIUrl":null,"url":null,"abstract":"<p >There is an urgent demand to develop high-performance flexible batteries for a wide range of contemporary emerging fields, including flexible electronics, wearable sensors, and implantable medical devices. However, the inherent safety and stability issues of traditional organic liquid-based electrolytes make their application in flexible batteries unsatisfactory. Therefore, exploring gel electrolytes with superior ionic conductivity and safety is considered to be the key to the development of flexible batteries. In this paper, two types of high-quality ionic liquid-based gel polymer electrolyte membranes (PVDF-ILs) are created by a conventional solution-casting method, which are further integrated into flexible aluminum-air batteries to guide the interface and process research, and the related discharge properties of two ionic liquid-based electrolyte membrane (PVDF-[C<sub>4</sub>mpyr]Cl, PVDF-[BMIM]Cl) in different bending states are discussed. The results show that PVDF-ILs have a rich pore structure and interwoven skeleton network, leading to relatively high ionic conductivity (2.97 × 10<sup>–3</sup> S cm<sup>–1</sup>). Moreover, two types of batteries can meet the needs of flexibility, although there is a slight loss of power density under various bending conditions. In general, a PVDF-[C<sub>4</sub>mpyr]Cl-based flexible aluminum-air battery is suitable for the working conditions of high power and low bending angle, while the PVDF-[BMIM]Cl-based flexible aluminum-air battery is favored for microwatt low-power devices with high flexibility requirements.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"38 35","pages":"10791–10798"},"PeriodicalIF":3.7000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.2c01178","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
There is an urgent demand to develop high-performance flexible batteries for a wide range of contemporary emerging fields, including flexible electronics, wearable sensors, and implantable medical devices. However, the inherent safety and stability issues of traditional organic liquid-based electrolytes make their application in flexible batteries unsatisfactory. Therefore, exploring gel electrolytes with superior ionic conductivity and safety is considered to be the key to the development of flexible batteries. In this paper, two types of high-quality ionic liquid-based gel polymer electrolyte membranes (PVDF-ILs) are created by a conventional solution-casting method, which are further integrated into flexible aluminum-air batteries to guide the interface and process research, and the related discharge properties of two ionic liquid-based electrolyte membrane (PVDF-[C4mpyr]Cl, PVDF-[BMIM]Cl) in different bending states are discussed. The results show that PVDF-ILs have a rich pore structure and interwoven skeleton network, leading to relatively high ionic conductivity (2.97 × 10–3 S cm–1). Moreover, two types of batteries can meet the needs of flexibility, although there is a slight loss of power density under various bending conditions. In general, a PVDF-[C4mpyr]Cl-based flexible aluminum-air battery is suitable for the working conditions of high power and low bending angle, while the PVDF-[BMIM]Cl-based flexible aluminum-air battery is favored for microwatt low-power devices with high flexibility requirements.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).