Mengxue Liu , Changming Chen , Keqiang Gao , Fan Gao , Chunlian Qin , Qunchen Yuan , Hong Zhang , Liujing Zhuang , Ping Wang
{"title":"Neuronal network-based biomimetic chip for long-term detection of olfactory dysfunction model in early-stage Alzheimer's disease","authors":"Mengxue Liu , Changming Chen , Keqiang Gao , Fan Gao , Chunlian Qin , Qunchen Yuan , Hong Zhang , Liujing Zhuang , Ping Wang","doi":"10.1016/j.bios.2022.114619","DOIUrl":null,"url":null,"abstract":"<div><p><span>Olfactory dysfunction is an early symptom of neurodegenerative disease. Amyloid-beta oligomers<span> (AβOs), the pathologic protein of Alzheimer's disease<span> (AD), have been confirmed to be firstly deposited in olfactory bulb (OB), causing smell to malfunction. However, the detailed mechanisms underlying pathogenic nature of AβOs-induced olfactory neuronal degeneration in AD are not completely realized. Here, an early-stage olfactory dysfunction pathological model of AD </span></span></span><em>in vitro</em><span> based on biomimetic<span> OB neuronal network chip was established for dynamic multi-site detection of neuronal electrical activity and network connection. We found both spike firing and correlation of overall neuronal network change regularly displayed gradually active state and then rapidly decay state after AβOs induction. Moreover, MK-801 and memantine were administrated at early-stage to detect alteration of OB neurons simulating nasal administration for AD treatment, which showed an almost recovery through the intermittent firing pattern. Together, this neuronal network-on-chip has revealed synaptic impairment and network neurodegeneration of olfactory dysfunction in AD, providing potential mechanisms information for early-stage progressive olfactory amyloidogenic pathology.</span></span></p></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"216 ","pages":"Article 114619"},"PeriodicalIF":10.5000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566322006595","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Olfactory dysfunction is an early symptom of neurodegenerative disease. Amyloid-beta oligomers (AβOs), the pathologic protein of Alzheimer's disease (AD), have been confirmed to be firstly deposited in olfactory bulb (OB), causing smell to malfunction. However, the detailed mechanisms underlying pathogenic nature of AβOs-induced olfactory neuronal degeneration in AD are not completely realized. Here, an early-stage olfactory dysfunction pathological model of AD in vitro based on biomimetic OB neuronal network chip was established for dynamic multi-site detection of neuronal electrical activity and network connection. We found both spike firing and correlation of overall neuronal network change regularly displayed gradually active state and then rapidly decay state after AβOs induction. Moreover, MK-801 and memantine were administrated at early-stage to detect alteration of OB neurons simulating nasal administration for AD treatment, which showed an almost recovery through the intermittent firing pattern. Together, this neuronal network-on-chip has revealed synaptic impairment and network neurodegeneration of olfactory dysfunction in AD, providing potential mechanisms information for early-stage progressive olfactory amyloidogenic pathology.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.