Xianzhao Zhang , Dawei Zhen , Fengmao Liu , Rui Chen , Qingrong Peng , Zongyi Wang
{"title":"An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies","authors":"Xianzhao Zhang , Dawei Zhen , Fengmao Liu , Rui Chen , Qingrong Peng , Zongyi Wang","doi":"10.1016/j.biortech.2022.128440","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, poplar wood biochar modified with Fe<sub>3</sub>O<sub>4</sub> (MPBC) was prepared using poplar wood as carbon source applied to remove tetracyclines and fluoroquinolones. The adsorption behavior was investigated by batch experiments, and a series of characterization techniques were used to study the corresponding mechanism. Characterizations indicated that pore filling, electrostatic interactions, π-π interaction, surface complexation, and hydrogen bond contributed to the adsorption of antibiotics on MPBC. Most importantly, the thermodynamic experiment results showed that the adsorption capacity of MPBC for tetracyclines (70.28–89.58 mg⋅g<sup>−1</sup>) was significantly higher than fluoroquinolones (35.54–60.31 mg⋅g<sup>−1</sup>), which was further explained by hydrogen bond interactions calculated from Conductor-like screening model for real solvents (COSMO-RS). In addition, the adsorption between MPBC and antibiotics was favorable at lower ionic strengths and neutral conditions. Conclusively, this study could provide a promising approach to controlling the pollution of tetracyclines and fluoroquinolones.</p></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852422017734","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, poplar wood biochar modified with Fe3O4 (MPBC) was prepared using poplar wood as carbon source applied to remove tetracyclines and fluoroquinolones. The adsorption behavior was investigated by batch experiments, and a series of characterization techniques were used to study the corresponding mechanism. Characterizations indicated that pore filling, electrostatic interactions, π-π interaction, surface complexation, and hydrogen bond contributed to the adsorption of antibiotics on MPBC. Most importantly, the thermodynamic experiment results showed that the adsorption capacity of MPBC for tetracyclines (70.28–89.58 mg⋅g−1) was significantly higher than fluoroquinolones (35.54–60.31 mg⋅g−1), which was further explained by hydrogen bond interactions calculated from Conductor-like screening model for real solvents (COSMO-RS). In addition, the adsorption between MPBC and antibiotics was favorable at lower ionic strengths and neutral conditions. Conclusively, this study could provide a promising approach to controlling the pollution of tetracyclines and fluoroquinolones.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.