A flexible and wearable paper-based chemiresistive sensor modified with SWCNTs-PdNPs-polystyrene microspheres composite for the sensitive detection of ethylene gas: A new method for the determination of fruit ripeness and corruption
Hanlong Yan , Guo Zhao , Wei Lu , Can Hu , Xiaochan Wang , Gang Liu , Ning Shi , Nguyen Thi Dieu Thuy , Litao Zhang
{"title":"A flexible and wearable paper-based chemiresistive sensor modified with SWCNTs-PdNPs-polystyrene microspheres composite for the sensitive detection of ethylene gas: A new method for the determination of fruit ripeness and corruption","authors":"Hanlong Yan , Guo Zhao , Wei Lu , Can Hu , Xiaochan Wang , Gang Liu , Ning Shi , Nguyen Thi Dieu Thuy , Litao Zhang","doi":"10.1016/j.aca.2022.340724","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This study developed a flexible and wearable paper-based chemoresistive sensor (FWPCS) by modifying a SWCNT-PdNP-polystyrene microsphere (SPPM) composite (SPPM/FWPCS) for the low-cost and online determination of fruit ripeness and corruption. A new method for the batch and low-cost fabrication of SPPM/FWPCSs based on laser direct writing was proposed. The sensing mechanism of FWPCS relies on the electron depletion layer in the sensing composite created by the </span>Schottky barriers among SWCNTs, PdNPs, and the adsorbed oxygen, along with the construction of O</span><sub>2</sub><sup>−</sup><span><span><span>. When the SPPM sensing film is exposed to ethylene, trapped electrons are released into the conduction band through </span>oxidation<span> and cleavage of ethylene, causing a decrease in resistance. The properties and morphology of the synthesized SPPM composite were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and </span></span>Raman spectroscopy. Additionally, the key parameters for the fabrication of SPPMs/FWPCS related to the sensing performance were optimized. The concentration of C</span><sub>2</sub>H<sub>4</sub> can be detected down to 100 ppb using the SPPMs/FWPCS at 25 °C. Finally, the real-time determination of banana ripeness and corruption verified the feasibility of the sensor, indicating that the SPPMs/FWPCS has prospects in monitoring fruit ripeness and corruption during storage and transportation.</p></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1239 ","pages":"Article 340724"},"PeriodicalIF":6.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267022012958","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This study developed a flexible and wearable paper-based chemoresistive sensor (FWPCS) by modifying a SWCNT-PdNP-polystyrene microsphere (SPPM) composite (SPPM/FWPCS) for the low-cost and online determination of fruit ripeness and corruption. A new method for the batch and low-cost fabrication of SPPM/FWPCSs based on laser direct writing was proposed. The sensing mechanism of FWPCS relies on the electron depletion layer in the sensing composite created by the Schottky barriers among SWCNTs, PdNPs, and the adsorbed oxygen, along with the construction of O2−. When the SPPM sensing film is exposed to ethylene, trapped electrons are released into the conduction band through oxidation and cleavage of ethylene, causing a decrease in resistance. The properties and morphology of the synthesized SPPM composite were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Additionally, the key parameters for the fabrication of SPPMs/FWPCS related to the sensing performance were optimized. The concentration of C2H4 can be detected down to 100 ppb using the SPPMs/FWPCS at 25 °C. Finally, the real-time determination of banana ripeness and corruption verified the feasibility of the sensor, indicating that the SPPMs/FWPCS has prospects in monitoring fruit ripeness and corruption during storage and transportation.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.