Analysis of mathematical modelling on potentiometric biosensors.

ISRN biochemistry Pub Date : 2014-05-07 eCollection Date: 2014-01-01 DOI:10.1155/2014/582675
N Mehala, L Rajendran
{"title":"Analysis of mathematical modelling on potentiometric biosensors.","authors":"N Mehala,&nbsp;L Rajendran","doi":"10.1155/2014/582675","DOIUrl":null,"url":null,"abstract":"<p><p>A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. </p>","PeriodicalId":90189,"journal":{"name":"ISRN biochemistry","volume":"2014 ","pages":"582675"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/582675","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/582675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

Abstract Image

Abstract Image

Abstract Image

电位生物传感器的数学建模分析。
建立了一种非稳态条件下电位酶电极的数学模型。该模型基于Michaelis-Menten形式的两个耦合非线性随时间的反应扩散方程系统,描述酶层内底物和产物的浓度。利用新的同伦摄动方法,导出了各参数值下底物和生成物浓度及相应通量响应的解析表达式。此外,本文采用复反演公式求解边值问题。得到的解析解可以完整地描述两个动力学参数(不饱和/饱和参数和反应/扩散参数)的响应曲线。对两种极限情况(零阶和一阶动力学)给出了理论描述,并对一般情况给出了相对简单的方法。利用Scilab/Matlab程序将分析结果与仿真结果进行了比较。数值结果与理论相符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信