Spatial Confidence Regions for Quantifying and Visualizing Registration Uncertainty.

Takanori Watanabe, Clayton Scott
{"title":"Spatial Confidence Regions for Quantifying and Visualizing Registration Uncertainty.","authors":"Takanori Watanabe,&nbsp;Clayton Scott","doi":"10.1007/978-3-642-31340-0_13","DOIUrl":null,"url":null,"abstract":"<p><p>For image registration to be applicable in a clinical setting, it is important to know the degree of uncertainty in the returned point-correspondences. In this paper, we propose a data-driven method that allows one to visualize and quantify the registration uncertainty through spatially adaptive confidence regions. The method applies to various parametric deformation models and to any choice of the similarity criterion. We adopt the B-spline model and the negative sum of squared differences for concreteness. At the heart of the proposed method is a novel shrinkage-based estimate of the distribution on deformation parameters. We present some empirical evaluations of the method in 2-D using images of the lung and liver, and the method generalizes to 3-D.</p>","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"7359 ","pages":"120-130"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-31340-0_13","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-31340-0_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

For image registration to be applicable in a clinical setting, it is important to know the degree of uncertainty in the returned point-correspondences. In this paper, we propose a data-driven method that allows one to visualize and quantify the registration uncertainty through spatially adaptive confidence regions. The method applies to various parametric deformation models and to any choice of the similarity criterion. We adopt the B-spline model and the negative sum of squared differences for concreteness. At the heart of the proposed method is a novel shrinkage-based estimate of the distribution on deformation parameters. We present some empirical evaluations of the method in 2-D using images of the lung and liver, and the method generalizes to 3-D.

用于量化和可视化配准不确定性的空间置信区域。
为了使图像配准适用于临床环境,重要的是要知道返回点对应的不确定性程度。在本文中,我们提出了一种数据驱动的方法,允许人们通过空间自适应置信区域可视化和量化配准不确定性。该方法适用于各种参数变形模型和任意相似准则的选择。我们采用b样条模型和负的差的平方和的具体。该方法的核心是一种新的基于收缩的变形参数分布估计。我们使用肺和肝脏的图像对该方法进行了一些二维的经验评估,并将该方法推广到三维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信