Naturally Occurring Follicle-Stimulating Hormone Glycosylation Variants.

John S Davis, T Rajendra Kumar, Jeffrey V May, George R Bousfield
{"title":"Naturally Occurring Follicle-Stimulating Hormone Glycosylation Variants.","authors":"John S Davis, T Rajendra Kumar, Jeffrey V May, George R Bousfield","doi":"10.4172/2153-0637.1000e117","DOIUrl":null,"url":null,"abstract":"Follicle-stimulating hormone (FSH) is a member of the glycoprotein hormone family, which is a subfamily of the cystine knot growth factor superfamily [1,2]. The glycoprotein hormones are composed of heterodimeric glycoprotein subunits, a common α-subunit, and a hormone-specific β-subunit. While the α-subunit primary structure is identical for all glycoprotein hormones within the same species, the oligosaccharide populations differ in a hormone-specific manner [3–6]. Characterizing the oligosaccharides released from an α-subunit preparation can identify the hormone from which the subunit was derived [7]. There are 3 to 4 β-subunits in vertebrates, which combine with α-subunit to create either FSH, luteinizing hormone (LH), thyroid-stimulating hormone (TSH), or in primates and equids, chorionic gonadotropin (CG) [8]. As both glycoprotein hormone subunits are cystine knot proteins [9–11] the protein backbone is folded into a series of three loops, two relatively rigid hairpin loops on one side of the knot, designated L1 and L3, and a single, flexible loop on the other side [12], designated L2. Oligosaccharides are attached to all 3 loops in a subunit-specific pattern (Figure 1). FSH subunits possess two potential N-glycosylation sites on each subunit and all four are of the Asn-Xaa-Thr type, which exhibit very efficient carbohydrate attachment [13]. Indeed, the α-subunit is always glycosylated at both sites in all known glycoprotein hormones. Because FSH α and β subunits co-migrate during electrophoresis, it is difficult to detect missing N-glycans in this hormone. FSHβ-specific Western blots have revealed partial glycosylation in equine FSHβ, human FSHβ (hFSH β), rhesus FSH β, and Japanese macaque FSHβ [14–16]. During the past few years, we have studied partially glycosylated hFSH isolated from pituitary extracts, postmenopausal urine, and conditioned tissue culture medium containing recombinant hFSH. Each glycosylation site in hFSH is decorated with a population of N-glycans. When total glycans are removed from reduced, carboxy-methylated FSH subunits, 39–130 glycans are found in mass spectra. We have data from only one glycosylation site, αAsn52, which possessed 29 neutral core ions, and when decorated with various patterns of sialic acid grew to 109 unique glycan structures. Micro heterogeneity can affect electrophoretic mobility, for example, placental hCGα with hybrid and biantennary glycans migrated faster than pituitary hFSHα, with triantennary, biantennary and tetraantennary glycans, which complicated sorting out the hFSH variants that resulted from loss of one or more N-glycans [17].","PeriodicalId":89585,"journal":{"name":"Journal of glycomics & lipidomics","volume":"4 1","pages":"e117"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2153-0637.1000e117","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of glycomics & lipidomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-0637.1000e117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Follicle-stimulating hormone (FSH) is a member of the glycoprotein hormone family, which is a subfamily of the cystine knot growth factor superfamily [1,2]. The glycoprotein hormones are composed of heterodimeric glycoprotein subunits, a common α-subunit, and a hormone-specific β-subunit. While the α-subunit primary structure is identical for all glycoprotein hormones within the same species, the oligosaccharide populations differ in a hormone-specific manner [3–6]. Characterizing the oligosaccharides released from an α-subunit preparation can identify the hormone from which the subunit was derived [7]. There are 3 to 4 β-subunits in vertebrates, which combine with α-subunit to create either FSH, luteinizing hormone (LH), thyroid-stimulating hormone (TSH), or in primates and equids, chorionic gonadotropin (CG) [8]. As both glycoprotein hormone subunits are cystine knot proteins [9–11] the protein backbone is folded into a series of three loops, two relatively rigid hairpin loops on one side of the knot, designated L1 and L3, and a single, flexible loop on the other side [12], designated L2. Oligosaccharides are attached to all 3 loops in a subunit-specific pattern (Figure 1). FSH subunits possess two potential N-glycosylation sites on each subunit and all four are of the Asn-Xaa-Thr type, which exhibit very efficient carbohydrate attachment [13]. Indeed, the α-subunit is always glycosylated at both sites in all known glycoprotein hormones. Because FSH α and β subunits co-migrate during electrophoresis, it is difficult to detect missing N-glycans in this hormone. FSHβ-specific Western blots have revealed partial glycosylation in equine FSHβ, human FSHβ (hFSH β), rhesus FSH β, and Japanese macaque FSHβ [14–16]. During the past few years, we have studied partially glycosylated hFSH isolated from pituitary extracts, postmenopausal urine, and conditioned tissue culture medium containing recombinant hFSH. Each glycosylation site in hFSH is decorated with a population of N-glycans. When total glycans are removed from reduced, carboxy-methylated FSH subunits, 39–130 glycans are found in mass spectra. We have data from only one glycosylation site, αAsn52, which possessed 29 neutral core ions, and when decorated with various patterns of sialic acid grew to 109 unique glycan structures. Micro heterogeneity can affect electrophoretic mobility, for example, placental hCGα with hybrid and biantennary glycans migrated faster than pituitary hFSHα, with triantennary, biantennary and tetraantennary glycans, which complicated sorting out the hFSH variants that resulted from loss of one or more N-glycans [17].

Abstract Image

Abstract Image

自然发生的促卵泡激素糖基化变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信