Jialin Meng, Tianyu Wang, Hao Zhu, Li Ji, Wenzhong Bao, Peng Zhou, Lin Chen*, Qing-Qing Sun*, David Wei Zhang
{"title":"Integrated In-Sensor Computing Optoelectronic Device for Environment-Adaptable Artificial Retina Perception Application","authors":"Jialin Meng, Tianyu Wang, Hao Zhu, Li Ji, Wenzhong Bao, Peng Zhou, Lin Chen*, Qing-Qing Sun*, David Wei Zhang","doi":"10.1021/acs.nanolett.1c03240","DOIUrl":null,"url":null,"abstract":"<p >With the development and application of artificial intelligence, there is an appeal to the exploitation of various sensors and memories. As the most important perception of human beings, vision occupies more than 80% of all the received information. Inspired by biological eyes, an artificial retina based on 2D Janus MoSSe was fabricated, which could simulate functions of visual perception with electronic/ion and optical comodulation. Furthermore, inspired by human brain, sensing, memory, and neuromorphic computing functions were integrated on one device for multifunctional intelligent electronics, which was beneficial for scalability and high efficiency. Through the formation of faradic electric double layer (EDL) at the metal-oxide/electrolyte interfaces could realize synaptic weight changes. On the basis of the optoelectronic performances, light adaptation of biological eyes, preprocessing, and recognition of handwritten digits were implemented successfully. This work may provide a strategy for the future integrated sensing-memory-processing device for optoelectronic artificial retina perception application.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"22 1","pages":"81–89"},"PeriodicalIF":9.6000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03240","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 74
Abstract
With the development and application of artificial intelligence, there is an appeal to the exploitation of various sensors and memories. As the most important perception of human beings, vision occupies more than 80% of all the received information. Inspired by biological eyes, an artificial retina based on 2D Janus MoSSe was fabricated, which could simulate functions of visual perception with electronic/ion and optical comodulation. Furthermore, inspired by human brain, sensing, memory, and neuromorphic computing functions were integrated on one device for multifunctional intelligent electronics, which was beneficial for scalability and high efficiency. Through the formation of faradic electric double layer (EDL) at the metal-oxide/electrolyte interfaces could realize synaptic weight changes. On the basis of the optoelectronic performances, light adaptation of biological eyes, preprocessing, and recognition of handwritten digits were implemented successfully. This work may provide a strategy for the future integrated sensing-memory-processing device for optoelectronic artificial retina perception application.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.