{"title":"[Morphological diversity in the postnatal skull development in representatives of two families of rodents (Spalacidae, Castoridae, Rodentia)].","authors":"A Iu Puzachenko, N P Korablev","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This is the first study to describe the results of measurement of three information parameters of morphological diversity (entropy, the measure of organization, and the Kullback-Leibler divergence) in the course of postnatal development of the skull in the populations of two rodent species (greater mole rat (Spalax microphthalmus Guld.) and Eurasian beaver (Castor fiber (L.)). The terms \"morphosystem\" and \"morphological space\" and its structure are introduced. Within the framework of the developed approach, \"morphological diversity\" is considered as a variable associated with the morphological space structure. Testing the hypothesis of the dominance of self-organization processes and an increase in the organization of the morphological diversity of the skull in the course ofontogeny showed its inconsistency. The morphosystem of the skull of the studied species undergoes transitions between more organized and less organized states, periodically approaching and departing from the \"steady state.\" Such dynamics characterizes the morphosystem of the skull as a dynamic and nonlinear system.</p>","PeriodicalId":19673,"journal":{"name":"Ontogenez","volume":"45 3","pages":"187-200"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ontogenez","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This is the first study to describe the results of measurement of three information parameters of morphological diversity (entropy, the measure of organization, and the Kullback-Leibler divergence) in the course of postnatal development of the skull in the populations of two rodent species (greater mole rat (Spalax microphthalmus Guld.) and Eurasian beaver (Castor fiber (L.)). The terms "morphosystem" and "morphological space" and its structure are introduced. Within the framework of the developed approach, "morphological diversity" is considered as a variable associated with the morphological space structure. Testing the hypothesis of the dominance of self-organization processes and an increase in the organization of the morphological diversity of the skull in the course ofontogeny showed its inconsistency. The morphosystem of the skull of the studied species undergoes transitions between more organized and less organized states, periodically approaching and departing from the "steady state." Such dynamics characterizes the morphosystem of the skull as a dynamic and nonlinear system.