A reliable method for the detection of BRCA1 and BRCA2 mutations in fixed tumour tissue utilising multiplex PCR-based targeted next generation sequencing.
Gillian Ellison, Shuwen Huang, Hedley Carr, Andrew Wallace, Miika Ahdesmaki, Sanjeev Bhaskar, John Mills
{"title":"A reliable method for the detection of BRCA1 and BRCA2 mutations in fixed tumour tissue utilising multiplex PCR-based targeted next generation sequencing.","authors":"Gillian Ellison, Shuwen Huang, Hedley Carr, Andrew Wallace, Miika Ahdesmaki, Sanjeev Bhaskar, John Mills","doi":"10.1186/s12907-015-0004-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Germline mutations in BRCA1 or BRCA2 lead to a high lifetime probability of developing ovarian or breast cancer. These genes can also be involved in the development of non-hereditary tumours as somatic BRCA1/2 pathogenic variants are found in some of these cancers. Since patients with somatic BRCA pathogenic variants may benefit from treatment with poly ADP ribose polymerase inhibitors, it is important to be able to test for somatic changes in routinely available tumour samples. Such samples are typically formalin-fixed paraffin-embedded (FFPE) tissue, where the extracted DNA tends to be highly fragmented and of limited quantity, making analysis of large genes such as BRCA1 and BRCA2 challenging. This is made more difficult as somatic changes may be evident in only part of the sample, due to the presence of normal tissue.</p><p><strong>Methods: </strong>We examined the feasibility of analysing DNA extracted from FFPE ovarian and breast tumour tissue to identify significant DNA variants in BRCA1/ BRCA2 using next generation sequencing methods that were sensitive enough to detect low level mutations, multiplexed to reduce the amount of DNA required and had short amplicon design. The utility of two GeneRead DNAseq Targeted Exon Enrichment Panels with different designs targeting only BRCA1/2 exons, and the Ion AmpliSeq BRCA community panel, followed by library preparation and adaptor ligation using the TruSeq DNA PCR-Free HT Sample Preparation Kit and NGS analysis on the MiSeq were investigated.</p><p><strong>Results: </strong>Using the GeneRead method, we successfully analysed over 76% of samples, with >95% coverage of BRCA1/2 coding regions and a mean average read depth of >1000-fold. All mutations identified were confirmed where possible by Sanger sequencing or replication to eliminate the risk of false positive results due to artefacts within FFPE material. Admixture experiments demonstrated that BRCA1/2 variants could be detected if present in >10% of the sample. A sample subset was evaluated using the Ion AmpliSeq BRCA panel, achieving >99% coverage and sufficient read depth for a proportion of the samples.</p><p><strong>Conclusions: </strong>Detection of BRCA1/2 variants in fixed tissue is feasible, and could be performed prospectively to facilitate optimum treatment decisions for ovarian or breast cancer patients.</p>","PeriodicalId":35804,"journal":{"name":"BMC Clinical Pathology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12907-015-0004-6","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Clinical Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12907-015-0004-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 47
Abstract
Background: Germline mutations in BRCA1 or BRCA2 lead to a high lifetime probability of developing ovarian or breast cancer. These genes can also be involved in the development of non-hereditary tumours as somatic BRCA1/2 pathogenic variants are found in some of these cancers. Since patients with somatic BRCA pathogenic variants may benefit from treatment with poly ADP ribose polymerase inhibitors, it is important to be able to test for somatic changes in routinely available tumour samples. Such samples are typically formalin-fixed paraffin-embedded (FFPE) tissue, where the extracted DNA tends to be highly fragmented and of limited quantity, making analysis of large genes such as BRCA1 and BRCA2 challenging. This is made more difficult as somatic changes may be evident in only part of the sample, due to the presence of normal tissue.
Methods: We examined the feasibility of analysing DNA extracted from FFPE ovarian and breast tumour tissue to identify significant DNA variants in BRCA1/ BRCA2 using next generation sequencing methods that were sensitive enough to detect low level mutations, multiplexed to reduce the amount of DNA required and had short amplicon design. The utility of two GeneRead DNAseq Targeted Exon Enrichment Panels with different designs targeting only BRCA1/2 exons, and the Ion AmpliSeq BRCA community panel, followed by library preparation and adaptor ligation using the TruSeq DNA PCR-Free HT Sample Preparation Kit and NGS analysis on the MiSeq were investigated.
Results: Using the GeneRead method, we successfully analysed over 76% of samples, with >95% coverage of BRCA1/2 coding regions and a mean average read depth of >1000-fold. All mutations identified were confirmed where possible by Sanger sequencing or replication to eliminate the risk of false positive results due to artefacts within FFPE material. Admixture experiments demonstrated that BRCA1/2 variants could be detected if present in >10% of the sample. A sample subset was evaluated using the Ion AmpliSeq BRCA panel, achieving >99% coverage and sufficient read depth for a proportion of the samples.
Conclusions: Detection of BRCA1/2 variants in fixed tissue is feasible, and could be performed prospectively to facilitate optimum treatment decisions for ovarian or breast cancer patients.
期刊介绍:
BMC Clinical Pathology is an open access journal publishing original peer-reviewed research articles in all aspects of histopathology, haematology, clinical biochemistry, and medical microbiology (including virology, parasitology, and infection control). BMC Clinical Pathology (ISSN 1472-6890) is indexed/tracked/covered by PubMed, CAS, EMBASE, Scopus and Google Scholar.