Fabrizio Billi PhD , Paul Benya PhD , Edward Ebramzadeh PhD , Pat Campbell PhD , Frank Chan PhD , Harry A. McKellop PhD
{"title":"Metal wear particles: What we know, what we do not know, and why","authors":"Fabrizio Billi PhD , Paul Benya PhD , Edward Ebramzadeh PhD , Pat Campbell PhD , Frank Chan PhD , Harry A. McKellop PhD","doi":"10.1016/j.esas.2009.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of wear particle characterization for orthopaedic implants has long been established in the hip and knee arthroplasty literature. With the increasing use of motion preservation implants in the spine, the characterization of wear debris, particularly metallic nature, is gaining importance. An accurate morphological analysis of wear particles provides for both a complete characterization of the biocompatibility of the implant material and its wear products, and an in-depth understanding of the wear mechanisms, ion release, and associated corrosive activity related to the wear particles. In this paper, we present an overview of the most commonly-used published protocols for the isolation and characterization of metal wear particles, and highlight the limitations and uncertainties inherent to metal particle analysis.</p></div>","PeriodicalId":88695,"journal":{"name":"SAS journal","volume":"3 4","pages":"Pages 133-142"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.esas.2009.11.006","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAS journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935981009000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
The importance of wear particle characterization for orthopaedic implants has long been established in the hip and knee arthroplasty literature. With the increasing use of motion preservation implants in the spine, the characterization of wear debris, particularly metallic nature, is gaining importance. An accurate morphological analysis of wear particles provides for both a complete characterization of the biocompatibility of the implant material and its wear products, and an in-depth understanding of the wear mechanisms, ion release, and associated corrosive activity related to the wear particles. In this paper, we present an overview of the most commonly-used published protocols for the isolation and characterization of metal wear particles, and highlight the limitations and uncertainties inherent to metal particle analysis.