Tim M Blakely, Jared D Olson, Kai J Miller, Rajesh P N Rao, Jeffrey G Ojemann
{"title":"Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.","authors":"Tim M Blakely, Jared D Olson, Kai J Miller, Rajesh P N Rao, Jeffrey G Ojemann","doi":"10.1080/2326263X.2014.954183","DOIUrl":null,"url":null,"abstract":"<p><p>Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75-200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms.</p>","PeriodicalId":45112,"journal":{"name":"Brain-Computer Interfaces","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2326263X.2014.954183","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-Computer Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2326263X.2014.954183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 17
Abstract
Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75-200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms.