Yu Wang , Nana Fan , Jun Song , Juan Zhong , Xiaogang Guo , Weihua Tian , Quanjun Zhang , Fenggong Cui , Li Li , Philip N Newsome , Jon Frampton , Miguel A Esteban , Liangxue Lai
{"title":"Generation of knockout rabbits using transcription activator-like effector nucleases","authors":"Yu Wang , Nana Fan , Jun Song , Juan Zhong , Xiaogang Guo , Weihua Tian , Quanjun Zhang , Fenggong Cui , Li Li , Philip N Newsome , Jon Frampton , Miguel A Esteban , Liangxue Lai","doi":"10.1186/2045-9769-3-3","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"3 1","pages":"Article 3:3"},"PeriodicalIF":4.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2045-9769-3-3","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2045976917300172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine