Zigu Chen , Xian Liu , Weichao Wang , Luyao Zhang , Weibo Ling , Chao Wang , Jie Jiang , Jiayi Song , Yuan Liu , Dawei Lu , Fen Liu , Aiqian Zhang , Qian Liu , Jianqing Zhang , Guibin Jiang
{"title":"Machine learning-aided metallomic profiling in serum and urine of thyroid cancer patients and its environmental implications","authors":"Zigu Chen , Xian Liu , Weichao Wang , Luyao Zhang , Weibo Ling , Chao Wang , Jie Jiang , Jiayi Song , Yuan Liu , Dawei Lu , Fen Liu , Aiqian Zhang , Qian Liu , Jianqing Zhang , Guibin Jiang","doi":"10.1016/j.scitotenv.2023.165100","DOIUrl":null,"url":null,"abstract":"<div><p>The incidence rate of thyroid cancer has been growing worldwide. Thyroid health is closely related with multiple trace metals, and the nutrients are essential in maintaining thyroid function while the contaminants can disturb thyroid morphology and homeostasis. In this study, we conducted metallomic analysis in thyroid cancer patients (<em>n</em> = 40) and control subjects (<em>n</em> = 40) recruited in Shenzhen, China with a high incidence of thyroid cancer. We found significant alterations in serumal and urinary metallomic profiling (including Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Cd, I, Ba, Tl, and Pb) and elemental correlative patterns between thyroid cancer patients and controls. Additionally, we also measured the serum Cu isotopic composition and found a multifaceted disturbance in Cu metabolism in thyroid disease patients. Based on the metallome variations, we built and assessed the thyroid cancer-predictive performance of seven machine learning algorithms. Among them, the Random Forest model performed the best with the accuracy of 1.000, 0.858, and 0.813 on the training, 5-fold cross-validation, and test set, respectively. The high performance of machine learning has demonstrated the great promise of metallomic analysis in the identification of thyroid cancer. Then, the Shapley Additive exPlanations approach was used to further interpret the variable contributions of the model and it showed that serum Pb contributed the most in the identification process. To the best of our knowledge, this is the first study that combines machine learning and metallome data for cancer identification, and it supports the indication of environmental heavy metal-related thyroid cancer etiology.</p></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969723037233","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence rate of thyroid cancer has been growing worldwide. Thyroid health is closely related with multiple trace metals, and the nutrients are essential in maintaining thyroid function while the contaminants can disturb thyroid morphology and homeostasis. In this study, we conducted metallomic analysis in thyroid cancer patients (n = 40) and control subjects (n = 40) recruited in Shenzhen, China with a high incidence of thyroid cancer. We found significant alterations in serumal and urinary metallomic profiling (including Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Cd, I, Ba, Tl, and Pb) and elemental correlative patterns between thyroid cancer patients and controls. Additionally, we also measured the serum Cu isotopic composition and found a multifaceted disturbance in Cu metabolism in thyroid disease patients. Based on the metallome variations, we built and assessed the thyroid cancer-predictive performance of seven machine learning algorithms. Among them, the Random Forest model performed the best with the accuracy of 1.000, 0.858, and 0.813 on the training, 5-fold cross-validation, and test set, respectively. The high performance of machine learning has demonstrated the great promise of metallomic analysis in the identification of thyroid cancer. Then, the Shapley Additive exPlanations approach was used to further interpret the variable contributions of the model and it showed that serum Pb contributed the most in the identification process. To the best of our knowledge, this is the first study that combines machine learning and metallome data for cancer identification, and it supports the indication of environmental heavy metal-related thyroid cancer etiology.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.