{"title":"A Simple Density-Based Empirical Likelihood Ratio Test for Independence.","authors":"Albert Vexler, Wan-Min Tsai, Alan D Hutson","doi":"10.1080/00031305.2014.901922","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a novel nonparametric likelihood ratio test for independence between two random variables using a technique that is free of the common constraints of defining a given set of specific dependence structures. Our methodology revolves around an exact density-based empirical likelihood ratio test statistic that approximates in a distribution-free fashion the corresponding most powerful parametric likelihood ratio test. We demonstrate that the proposed test is very powerful in detecting general structures of dependence between two random variables, including non-linear and/or random-effect dependence structures. An extensive Monte Carlo study confirms that the proposed test is superior to the classical nonparametric procedures across a variety of settings. The real-world applicability of the proposed test is illustrated using data from a study of biomarkers associated with myocardial infarction.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00031305.2014.901922","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2014.901922","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 18
Abstract
We develop a novel nonparametric likelihood ratio test for independence between two random variables using a technique that is free of the common constraints of defining a given set of specific dependence structures. Our methodology revolves around an exact density-based empirical likelihood ratio test statistic that approximates in a distribution-free fashion the corresponding most powerful parametric likelihood ratio test. We demonstrate that the proposed test is very powerful in detecting general structures of dependence between two random variables, including non-linear and/or random-effect dependence structures. An extensive Monte Carlo study confirms that the proposed test is superior to the classical nonparametric procedures across a variety of settings. The real-world applicability of the proposed test is illustrated using data from a study of biomarkers associated with myocardial infarction.
期刊介绍:
Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.